
METODOS CUATITATIVOS PARA ADMINISTRACION.

TRABAJO DE INVESTIGACION 4

Estructura básica de los modelos de Línea de Espera.

KARLA MONSERRAT CHAPOL MARTINEZ

405-A

MÉTODOS CUANTITATIVOS PARA LA ADMINISTRACIÓN

LIC. EN ADMINISTRACIÓN

INSTITUTO TECNOLOGICO SUPERIOR DE SAN ANDRÉS

TUXTLA

TEORÍA DE COLAS

La teoría de colas, también conocida como teoría de líneas de espera, es una disciplina matemática que estudia el comportamiento de las filas o colas en sistemas donde los recursos son limitados. Esta teoría se utiliza para analizar y optimizar el flujo de clientes, procesos o tareas en diversos contextos, desde servicios al cliente hasta sistemas de producción y logística.

¿QUÉ ES LA TEORÍA DE COLAS?

La teoría de colas se enfoca en modelar y analizar sistemas donde los clientes, tareas o entidades compiten por recursos limitados. Estos sistemas suelen involucrar dos elementos principales:

- Clientes: Las entidades que llegan al sistema y requieren un servicio (por ejemplo, personas, vehículos, paquetes, etc.).
- Servidores: Los recursos que atienden a los clientes (por ejemplo, cajeros, máquinas, estaciones de trabajo, etc.).

El objetivo de la teoría de colas es optimizar el sistema para minimizar el tiempo de espera, reducir costos y mejorar la eficiencia. Para ello, se utilizan modelos matemáticos que consideran factores como la tasa de llegada de clientes, la tasa de servicio, el número de servidores y la disciplina de la cola (por ejemplo, "primero en entrar, primero en salir").

🗮 ESTRUCTURA BÁSICA DE LOS MODELOS DE LÍNEA DE ESPERA

Un modelo de línea de espera se compone de varios elementos fundamentales que describen el comportamiento del sistema:

1. FUENTE DE ENTRADA (CLIENTES)

Es el conjunto de entidades que llegan al sistema para recibir un servicio. La fuente puede ser finita o infinita. En muchos modelos, se asume una fuente infinita, donde la llegada de nuevos clientes no depende del número de clientes en el sistema.

2. PROCESO DE LLEGADA

Describe cómo y cuándo los clientes llegan al sistema. Comúnmente, se modela mediante una distribución de Poisson, donde los tiempos entre llegadas siguen una distribución exponencial.

3. COLA

Es el lugar donde los clientes esperan antes de ser atendidos. La longitud de la cola puede ser finita o infinita, y su comportamiento depende de la disciplina de la cola y de la capacidad del sistema.

4. DISCIPLINA DE LA COLA

Determina el orden en que los clientes son atendidos. Las disciplinas más comunes son:

- FIFO (First In, First Out): El primero en llegar es el primero en ser atendido.
- LIFO (Last In, First Out): El último en llegar es el primero en ser atendido.
- SIRO (Service In Random Order): El orden de servicio es aleatorio.
- Prioridades: Los clientes con mayor prioridad son atendidos antes.

5. PROCESO DE SERVICIO

Describe el tiempo que tarda un servidor en atender a un cliente. A menudo, se modela mediante una distribución exponencial, aunque también se pueden utilizar otras distribuciones dependiendo del contexto.

6. NÚMERO DE SERVIDORES

Indica cuántos servidores están disponibles para atender a los clientes. Puede haber un solo servidor (sistema monocanal) o múltiples servidores (sistema multicanal).

7. CAPACIDAD DEL SISTEMA

Es el número máximo de clientes que pueden estar en el sistema (en espera o siendo atendidos). Puede ser finita o infinita.

NOTACIÓN DE KENDALL

La notación de Kendall es una forma estándar de describir modelos de colas y se representa como A/S/c/K/N/D, donde:

A: Distribución del tiempo entre llegadas.

- S: Distribución del tiempo de servicio.
- c: Número de servidores.
- K: Capacidad máxima del sistema.
- N: Tamaño de la población.
- D: Disciplina de la cola.

Por ejemplo, un modelo M/M/1 representa un sistema con llegadas y servicios de tipo Markoviano (exponencial) y un solo servidor.

MEDIDAS DE RENDIMIENTO

Las principales métricas para evaluar el desempeño de un sistema de colas incluyen:

- λ (lambda): Tasa promedio de llegadas.
- μ (mu): Tasa promedio de servicio.
- ρ (rho): Factor de utilización del sistema, calculado como ρ = λ / (c * μ), donde c es
 el número de servidores.
- L: Número promedio de clientes en el sistema.
- Lq: Número promedio de clientes en la cola.
- W: Tiempo promedio que un cliente pasa en el sistema.
- Wq: Tiempo promedio que un cliente espera en la cola.

Estas métricas permiten analizar y optimizar el rendimiento del sistema.

MODELOS CLÁSICOS DE LÍNEAS DE ESPERA

1. MODELO M/M/1

- Características:
 - Llegadas y servicios siguen una distribución exponencial.
 - Un solo servidor.
 - Capacidad infinita.

- Disciplina FIFO.
- Aplicaciones: Sistemas de atención al cliente con un único punto de servicio, como una ventanilla bancaria.

2. MODELO M/M/C

Características:

- Llegadas y servicios siguen una distribución exponencial.
- c servidores en paralelo.
- Capacidad infinita.
- Disciplina FIFO.
- Aplicaciones: Centros de llamadas con múltiples operadores.

3. MODELO M/G/1

Características:

- Llegadas siguen una distribución exponencial.
- Tiempo de servicio con distribución general.
- Un solo servidor.
- Disciplina FIFO.
- Aplicaciones: Sistemas donde el tiempo de servicio varía significativamente, como servicios de reparación.

APLICACIONES PRÁCTICAS

Los modelos de líneas de espera se aplican en diversos contextos para mejorar la eficiencia y la satisfacción del cliente:

- Bancos: Optimización del número de cajeros para reducir tiempos de espera.
- Hospitales: Gestión de salas de emergencia y programación de cirugías.

- Sistemas de manufactura: Gestión de líneas de producción y mantenimiento de maquinaria.
- Telecomunicaciones: Gestión del tráfico de datos y llamadas.

🔍 EJEMPLOS DETALLADOS DE MODELOS DE LÍNEAS DE ESPERA

EJEMPLO DE MODELO M/M/1

Contexto: Un cajero en una sucursal bancaria

Características del sistema:

- Tasa de llegada de clientes (λ): 10 clientes por hora.
- Tasa de servicio del cajero (μ): 12 clientes por hora.
- Un solo servidor.
- Tiempo entre llegadas y de servicio: distribución exponencial.
- Capacidad infinita y disciplina FIFO.

Aplicación:

- Se utiliza este modelo para determinar cuánto tiempo esperará un cliente promedio.
- Permite calcular la probabilidad de que haya una fila de cierto tamaño.
- Se puede analizar si contratar un segundo cajero reduce significativamente el tiempo de espera.

Resultado esperado:

- Tiempo promedio en el sistema (W): -6 minutos.
- Número promedio en la fila (Lq): -5 clientes.

EJEMPLO DE MODELO M/M/C

Contexto: Centro de atención telefónica (call center)

Características del sistema:

- λ: 120 llamadas por hora.
- μ: 30 llamadas atendidas por cada operador por hora.
- c: 5 operadores.
- Distribuciones de llegada y servicio: exponenciales.

Aplicación:

- Se modela el sistema para prever cuánto deben esperar los clientes para ser atendidos.
- Se evalúa el nivel de servicio, por ejemplo, que el 80% de las llamadas se atiendan en menos de 20 segundos.

Resultado esperado:

- Si ρ (utilización) se acerca mucho a 1, se necesitarían más operadores.
- Se puede optimizar el número de agentes contratados en función del costo y el nivel de servicio.

EJEMPLO DE MODELO M/G/1

Contexto: Taller de reparación de computadoras

Características del sistema:

- λ: 4 clientes por hora.
- Tiempo de servicio con una distribución general (por ejemplo, normal o uniforme), no necesariamente exponencial.
- Un solo técnico (servidor).

Aplicación:

- Aquí se modelan variaciones significativas en el tiempo de reparación (puede durar 10 minutos o hasta 2 horas).
- Este modelo es útil cuando la variabilidad del servicio es alta y no puede simplificarse con una distribución exponencial.

Resultado esperado:

- Permite estimar tiempos de espera más realistas considerando la variabilidad del servicio.
- Aporta herramientas para decidir si conviene entrenar más personal o ajustar la agenda del técnico.

EJEMPLO DE MODELO M/M/1/K (CAPACIDAD FINITA)

Contexto: Estacionamiento con capacidad limitada

Características del sistema:

- λ: 20 autos por hora.
- μ: 25 autos pueden salir por hora.
- c = 1 (una entrada/salida).
- K = 30 lugares de estacionamiento.

Aplicación:

- Permite estimar la probabilidad de que un auto llegue y no haya lugar disponible.
- Se usa para justificar la expansión del estacionamiento o el cobro de tarifas diferenciales.

Resultado esperado:

 Probabilidad de rechazo: si el estacionamiento se llena un 15% del tiempo, puede evaluarse una política de reservas o expansión.

EJEMPLO DE MODELO M/M/∞ (SERVIDORES INFINITOS)

Contexto: Servidor de descargas en la nube

Características del sistema:

- λ: 500 solicitudes por minuto.
- μ: cada descarga se sirve en 1 minuto.
- Número de servidores: ∞ (cada solicitud es atendida de inmediato sin espera).

Aplicación:

- Se utiliza en sistemas donde no se permite el tiempo de espera, como servicios premium de streaming o descargas.
- No hay cola, solo un análisis de utilización del sistema y costos asociados.

Resultado esperado:

- No hay espera ni rechazo.
- El enfoque está en el uso de recursos y en dimensionar la infraestructura (cloud computing, ancho de banda, etc.).

EJEMPLO DE MODELO CON PRIORIDADES

Contexto: Sala de emergencias de un hospital

Características del sistema:

- Los pacientes llegan con diferentes niveles de gravedad.
- Los casos críticos tienen prioridad sobre los menos urgentes.
- Varios médicos (c servidores).

Aplicación:

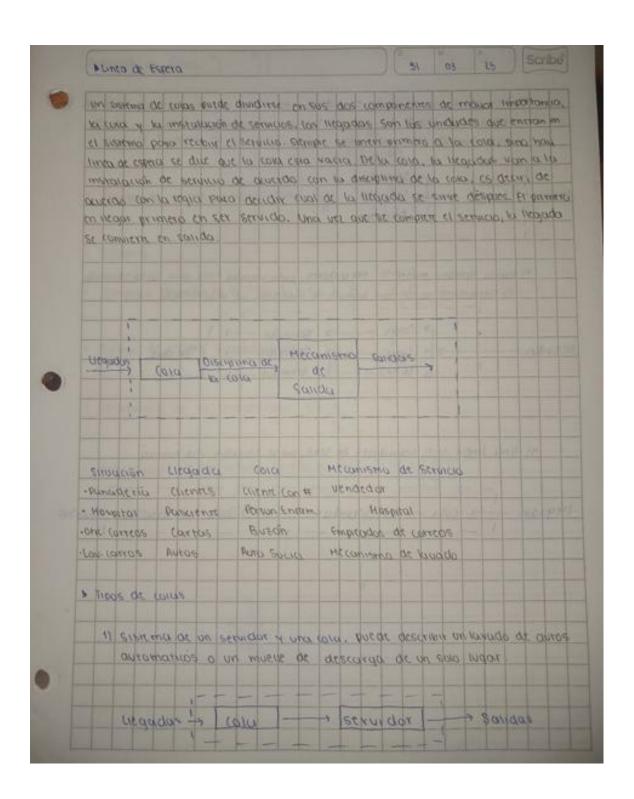
Permite implementar triage o clasificación de pacientes.

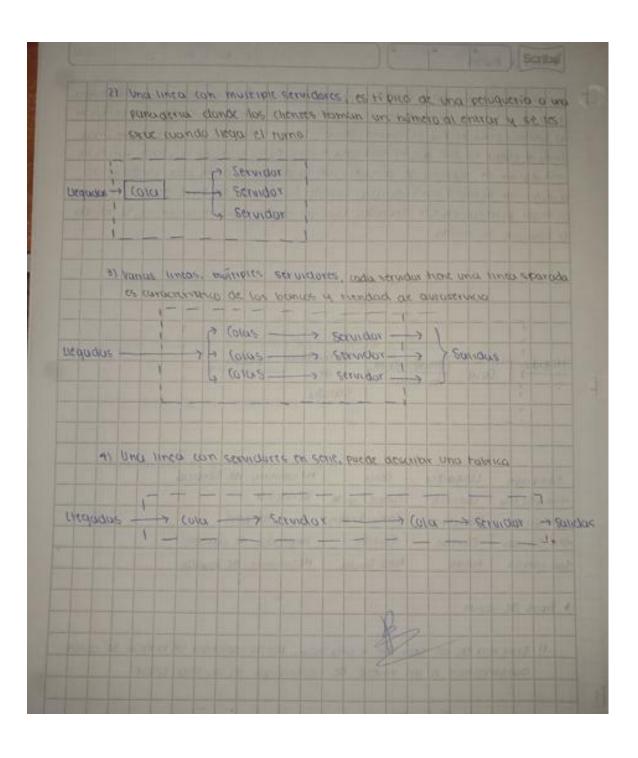
- Se modelan diferentes tiempos de espera por nivel de prioridad.
- Evalúa el impacto en la atención de urgencias y los recursos necesarios.

Resultado esperado:

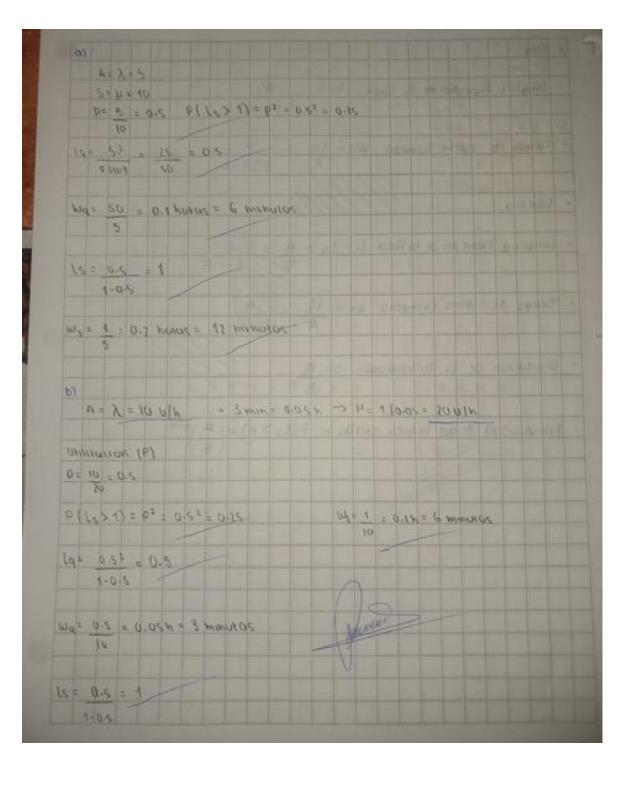
- Mejora en la atención de pacientes críticos.
- Justificación para más personal médico o protocolos de atención rápida.

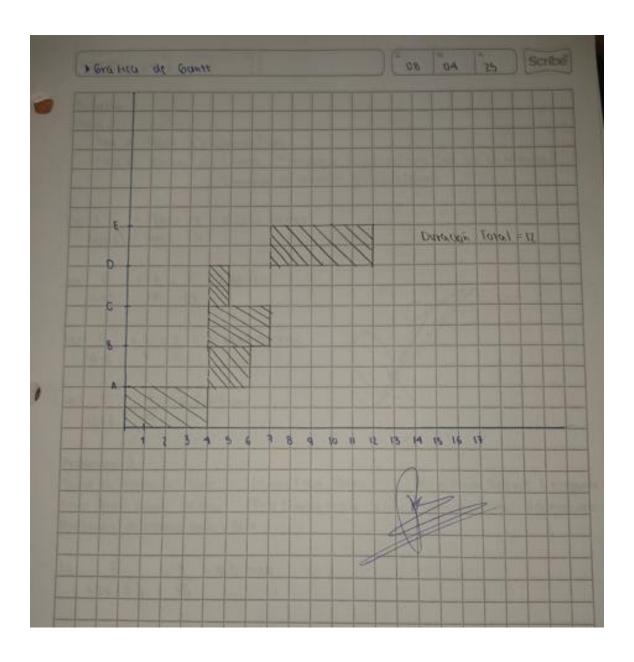
REFLEXIÓN FINAL


Los modelos de línea de espera permiten **simular escenarios del mundo real**, prever tiempos de espera, y tomar decisiones operativas y estratégicas fundamentadas. Son ampliamente usados en:


- Servicios de salud
- Banca y finanzas
- Manufactura
- Logística
- Tecnología (cloud, streaming, telecomunicaciones)
- Sector público (trámites, justicia, educación)

D BIBLIOGRAFÍA


- Teoría de colas: qué es, historia, modelos, para qué sirve, ejemplos: https://www.lifeder.com/teoria-colas/lifeder.com
- Estructura básica de los modelos de líneas de espera MarcoTeorico.com: https://www.marcoteorico.com/curso/87/matematicas-para-la-toma-de-decisiones/708/estructura-basica-de-los-modelos-de-lineas-de-esperamarcoteorico.com
- Teoría de colas Estadística.net: https://www.estadistica.net/IO/7-1-TEORIA-


PROBLEMARIO 4

- icona	at toics			0.4	04	24	
> (010) 4							
- longinus	Promedio de la Line		A2 (5-A	7			
· Trempo c	de escera promecio	Wq = Lq =	S ()	- R			
· SISHMA							
· tonguod	Promedio de la línea:	Ls = Lq + A	- 2 -	A 5 - F			
· Tiempo di	s espera promedio:	Ws = Les	8-I	A			
· Utursución	n de la Instalació						
Oresens Au		5					
1,000011100	ad at que la limea e	acida w 1/(L	2 > W)	= 0)		

	Probating 1
٧	Dayes
	Trade of Monda (a Net curve & I Work
	Take de Econos (w): 1 Orang " mondros : 15 colones hare (44 apr. 60 mondros)
	Symptom por cuent - 15 Changes I harris)
	10 62 - 30 - 4 - 0.2667 ENEWICE
	(SUG-6) 155 15
	Wat 6 = 6 2 = 2.6663m
	15 x 9 135 45
	15= 9 = 6 = 2 = 0.4687 CYCME
Ť	15-6 R 3
T	4= 1 = 1 = 6.6063 mm
	15-6 9
ı	
0	robot ma 2
	actor de amidocuent 500. Tie no Prom. Avec 1000 Prom Sistems 1 mo
	the prom those of the Puls 2 mile such that - when the color a small
	oxignates of trempo outs; to:
1	anticolity of contract and an analysis of the contract and an
17	4 3 = q = 0 5 mag
10	6 (6 -3) 18
H	9(6 2) 40
-	
N.A.	x = 3 = 1 dias = 4 horas
	6×3 18 6
-	
Ls	3 = 3 = 1 mag
	6-3 3
NS.	1 1 dias 2 8 horas

A 40 Chenes x hora	
7= 10'50' 30' 30' CHENES & POTO	
* toando X+10	os - Labrary -
U= 10140 - 0.25	01 20140 = 0.5
(q= 102 = 100 = 0 0133	La 202 - 100 - 10.5
46 (4010) 1200	40140-20) 800
Wa: 10 - 10 - 0,0083 hours -	lug 20 2 = 20 = 0.035h = 1.5ms
40 (40-10) 1700 1205 HIM	10 (40-20) 800
15: 10 = 0.333	LS: 30 = 70 = 1
40,(40-10)	40-10 80
Us: 1 = 1 = 0.033 hopes	65 1 . 1 - 0.05 h = 3 min
40-10 30 to 7 min	40-70 10
- hounds h= 30	-> Luando 1-39
U= 30 40 + 0.75	U= 39 Inu = 1975
192 302 900 . 275	las 30 1521 = 39.075
40(40-30) 400	40(10/19) 40
10 = 30 400 = 0.0 % %	Was 39 - 39 - 0. 935 - 58 Sm
40 (40-30) 4454	agrapas 60
15: 30 = 50 = 3	15= 59 - 1h = 60 mm
40-30 (0	40-39
Us 1 = 1 = 0.1 h = 6 min	
40-30 10	

	Le 30 enemys ×h
	A is Chemics wh
	30
	152 225 - 0.5
	36 (30-15) 450
Wy	15 - 10 - 0.0335 h = 2 mm
	30 (50-15) 450
	15 = 15 = 1
	30-15 15
WS	1 = 1 = 0.0667 h = 4 mm
	30-15 15

LIBRETA DE APUNTES

PROBLEMAS LINEA DE ESPERA

KARLA MONSERRAT CHAPOL MARTINEZ

405-A

MÉTODOS CUANTITATIVOS PARA LA ADMINISTRACIÓN

LIC. EN ADMINISTRACIÓN

INSTITUTO TECNOLOGICO SUPERIOR DE SAN ANDRÉS

TUXTLA

Problemario U-4	03 06 15	
(1) Karl	Honserrai Chapoi Hammes	
Dalos		
P1 40 nh	· Para X=10	
A= 10,100, 30 4 39 xh	P= 10 140 - 0.25 = 251	
	10= 101 140 (40-10) = 100 (1100 = 0.08	13
€ Para 1 . 30	Uq = 0-085 (10 = 0.0683 h = 0.5 m L5 = 10 (H0-10) = 10 (30 = 0.533	
P= 20 40 = 05 = 50x	11(40-10) 130 = 0.033 N - 5m	
400 40 (10) 400 len = 0 c	U= 25-1.	
md = 0 2130 = 0:032 p = 1.36 m	المستوادة وتنافلا	
1 = (01-04) [03 - 6	e Para X=30	
125 1180 1 0.05 K · 3 m	P= 30 140 = 0.75 asn	
U= 501	19 900 140 (10) - 900 1400 - 275	
6 Para 2 39	Wa - 175 50 = 0.075 h = 4.5 m	
	15 = 30 160 = 5	
19 34 140 = 0 1995 = 47 51 19 = 1.521 (4011) = 38 03	109 - 1(10 = 0.13 = 6 m)	
600 = 58 03 (34 = 0.935 k 50 5 m	N = 351	
15= 351 13 = 314		
We 1 1 1 - 1 h = 60 h		
V= 93 51		
0	3	
Dayas	Dova:	
N= 30 (Nenge x h		
A= 15 menes x h	3 = 20 Suncitudes Th	
	Tithips 5 * 4 m * 4160 * 0 05	3400-1
P : 15 130 = 0.5 = 501:	μ=15/W	
Lq= 225 130 (15) = 225 1460 = 0.5	Nº 1014 - 12-10	
Wa = 0.5/15 * 0. 853 h = 3 h	p = 201 ts = 1.33 (SISKN	no linesto
LS 151(30-15)=1		
WS= 1/15= 0.0667 h- 9m	h No se porden aprico	0 102
	Formulas Estandon	PORGUE !
V= 501	(OVO CICTURE INOCHI	Olderna I

EXAMEN 4

Examen 4				1 0000 B
-				Digipre (P
Ejercicio	1.			1000
Tasa de	llegadas X	= 6 pacie	nlesh	
Tiempo				
	c.F = 8861.0			
	18 19 1	20	112	T A TA
A) Wq	\(\lambda = \) \(-\lambda\) = 1.5	.1.5	6 - 0.5333	haran = 32 minut
B) Numera	promedia	Andre		
	9- 12	6"	= 34 -	3.2 pacientes
12013	, h(h - x	25(45-6)	11.25	
		Dial 1	6 65 6	a principal 17

jercicio 2.	
Dalos	J 83 3 3 2 2
Tasa de Negados (1): 3 personas /h	
Tiempo de aenicio = 15 min = 0.25 -	p = 1 /0.25 = 4 personas
A) $\frac{1}{4}$ = 1 - $\frac{3}{4}$ = 0.25 = 25 - 1	
B) Probabilidad de 2 visitantos	
P2 = (1 - p)p, bade p = 1 - 3 P2 = (1 - 0.35)(0.35) = 0.25 . 0.56	
C) Numero promedio de visi luntos	
L = X = 3 = 3 = 3	prexionas
D) Tiempo promedio en el sistemo. W= 1 - 1 - 1 hava	
E) Numero de chantes que esperan ser oil	
$(9 = x^2 - 3^2 - 9 = 1)$ $\mu(x - \lambda - 4(4 - 3)) = 1$	(12) passage