

Instituto Tecnológico

Superior de San Andrés

Tuxtla

Ingeniería Mecatrónica

Grupo: 311-B.

Materia:

Programación Avanzada.

Investigación - Unidad I

Docente:

M.T.I. Lorenzo de Jesús Organista Oliveros.

Alumno:

Ángel Emmanuel Pérez Dolores

Sán Andrés Tuxtla Ver, a 19 de Septiembre del 2025.

Introducción.

La Programación Orientada a Objetos (POO) es uno de los paradigmas más

utilizados en la informática moderna. Se originó como una alternativa a la

programación estructurada, ofreciendo un modelo más cercano a la manera en la

que los seres humanos entendemos el mundo: mediante objetos que poseen

características y realizan acciones. Este paradigma no solo facilita la construcción

de software complejo, sino que también promueve la reutilización, la escalabilidad

y el mantenimiento del código.

Programación Orientada a Objetos (POO)

Es un modelo de programación en el que el diseño de software se organiza

alrededor de datos u objetos, en vez de usar funciones y lógica.

Un objeto es una entidad que combina datos (atributos o propiedades) y

comportamientos (métodos o funciones). Se puede definir como un campo de datos

con atributos y comportamientos únicos.

La principal característica de este tipo de programación es que soporta objetos, que

tienen un tipo o clase asociado. Esas clases pueden heredar atributos de una clase

superior o superclase. Por esa razón, este enfoque de programación se utiliza en

programas grandes y complejos que se deben actualizar con cierta regularidad. Esta

forma de programar se inspira en la manera en que pensamos sobre el mundo real:

los objetos tienen características y realizan acciones.

Características de la programación orientada a objetos

Las características de la Programación Orientada a Objetos (POO) son los

principios fundamentales que permiten organizar, reutilizar y mantener el código de

manera eficiente.

Usos de clases.

Una clase en POO funciona como una plantilla o un modelo que define la estructura

y el comportamiento que serán comunes a un conjunto de objetos. Esta plantilla

especifica qué atributos (datos) y qué métodos (funciones o comportamientos)

deberán tener los objetos que se creen a partir de ella.

La clase determina las características esenciales de los objetos, como sus

propiedades y capacidades, sin materializar ninguna entidad concreta. Por ejemplo,

Por ejemplo, una clase “Coche” podría definir atributos como “marca”, “modelo”, y

“color”, y métodos como “arrancar” y “detener”.

Objetos

Con la clase pueden crearse instancias de un objeto, es una instancia concreta de

una clase, es decir, algo creado a partir del molde, Cada objeto creado de la misma

clase puede tener características diferentes. Cada objeto creado desde una misma

clase puede tener valores diferentes para sus atributos, pero todos compartirán la

misma estructura y comportamientos definidos por la clase.

Ambos conceptos están relacionado ya que, la clase actúa como un molde, mientras

que los objetos son las entidades reales creadas utilizando ese molde. Cada objeto

mantiene su propio estado, pero todos ellos siguen las directrices establecidas por

la clase de la que derivan.

4 principios de la Programación Orientada a Objetos

La programación orientada a objetos es más compleja de estructurar, es por eso

que utiliza principios que pueden ayudar a escribir un código mejor, más limpio y

reutilizable. Los principios de la Programación Orientada a Objetos (POO) son las

bases que guían cómo se organiza y estructura el código en este paradigma.

Generalmente se consideran cuatro principios fundamentales (conocidos como los

pilares de la POO).

Encapsulación.

La encapsulación presenta toda la información importante de un objeto dentro del

mismo y solo expone la información elegida al mundo exterior. Significa ocultar los

detalles internos de un objeto y permitir el acceso solo mediante métodos

específicos. Esta propiedad nos permite asegurar que la información de un objeto

esté oculta para el mundo exterior, agrupando en una clase las características o

atributos que tienen un acceso privado, y los comportamientos o métodos que

cuenta con un acceso público.

El único modo en la que esta se puede modificar es a través los propios métodos

del objeto. De esta manera, los atributos internos de un objeto son ser inaccesibles

desde fuera, pudiéndose modificar sólo llamando a las funciones correspondientes.

Abstracción.

Este principio consiste en simplificar la complejidad del mundo real modelando solo

los aspectos relevantes para un propósito particular, mientras se ocultan los detalles

innecesarios. La abstracción permite a los desarrolladores concentrarse en lo que

es importante para la aplicación, sin necesidad de entender cada detalle del

comportamiento o estado interno de los objetos. Esto reduce la complejidad y

mejora la comprensibilidad del código.

Herencia.

a herencia permite que una clase derive o herede propiedades y comportamientos

de otra clase, conocida como su clase padre. Esto facilita la reutilización del código

y la extensión de las funcionalidades existentes sin tener que reescribir mucho

código. Además, la herencia promueve la creación de una jerarquía de clases que

puede reflejar relaciones naturales entre objetos más amplios y específicos,

mejorando la organización del código. Mediante la definición en una clase de los

atributos y comportamientos básicos, pueden crearse clases secundarias,

ampliando la funcionalidad de la clase principal y añadiendo atributos y

comportamientos extra. Es una de las claves de la Programación Orientada a

Objetos.

Poliformismo

Se refiere a la capacidad de un objeto para tomar varias formas y comportarse de

manera diferente en diferentes contextos, usando la misma interfaz. Esto se logra

mediante el uso de la herencia y la sobreescritura de métodos, permitiendo que un

mismo método tenga diferentes implementaciones en distintas clases. Gracias al

polimorfismo permite tratar objetos de diferentes clases de manera uniforme.

Ventajas de la Programación Orientada a Objetos

Reutilización del Código:

Como se había mencionado, cuando se diseñan correctamente las clases, se

pueden usar en distintas partes del programa y en diferentes proyectos. La técnica

de herencia ahorra tiempo porque permite crear una clase genérica y luego definir

las subclases que heredarán los rasgos de la misma, de manera que no es

necesario escribir esas funciones de nuevo. Además, al aplicar un cambio en la

clase, todas las subclases lo adoptarán automáticamente.

Modularidad.

Una de las características de la programación orientada a objetos más interesantes

es la modularidad ya que así un equipo puede trabajar en múltiples objetos a la vez

mientras se minimizan las posibilidades de que un programador duplique la

funcionalidad de otro. El trabajo modular también permite dividir los problemas en

partes más pequeñas que se pueden probar de manera independiente

Conclusión

La Programación Orientada a Objetos representa un avance significativo en la

historia de la programación, al permitir un modelo más natural, escalable y

reutilizable. Sus principios fundamentales, clases, objetos, encapsulamiento,

abstracción, herencia y polimorfismo, han demostrado ser la base para el desarrollo

de sistemas complejos en múltiples áreas de la tecnología. Por ello, la POO no solo

es un paradigma vigente, sino una herramienta indispensable en la formación y

práctica de todo programador actual.

Fuentes Consultadas.

Darias Perez, Sergio. (s.f.). Qué es la Programación Orientada a Objetos. [Página

Web]. Intelequia. https://intelequia.com/es/blog/post/qu%C3%A9-es-la-

programaci%C3%B3n-orientada-a-objetos

Universidad Europea. (2022, 24 de Agosto). Programación orientada a objetos.

[Página Web]. https://universidadeuropea.com/blog/programacion-orientada-

objetos/

Valencia, Alonso. (2024, 9 de Mayo). ¿Qué es la Programación Orientada a Objetos

(POO) y cuáles son sus principios fundamentales?. [Página Web].

CodersLink. https://coderslink.com/talento/blog/que-es-la-programacion-

orientada-a-objetos-poo-y-cuales-son-sus-principios-fundamentales/

https://intelequia.com/es/blog/post/qu%C3%A9-es-la-programaci%C3%B3n-orientada-a-objetos
https://intelequia.com/es/blog/post/qu%C3%A9-es-la-programaci%C3%B3n-orientada-a-objetos
https://universidadeuropea.com/blog/programacion-orientada-objetos/
https://universidadeuropea.com/blog/programacion-orientada-objetos/
https://coderslink.com/talento/blog/que-es-la-programacion-orientada-a-objetos-poo-y-cuales-son-sus-principios-fundamentales/
https://coderslink.com/talento/blog/que-es-la-programacion-orientada-a-objetos-poo-y-cuales-son-sus-principios-fundamentales/

/* PROGRAMACION AVANZADA
UNIDAD 1
ING.MECATRONICA. GRUPO:311-A
ALUMNO: PEREZ DOLORES ANGEL EMMANUEL
PROGRAMA 7
Utiliza vectores y metodos para el llenado de datos
*/

#include <iostream>
using namespace std;

int vec[10];

void LlenaVector()
{
for (int x = 0; x < 10 ; x++)
 {
 cout <<"TECLEA LOS NUMERO \n";
 cin >> vec[x];
 }
}

void ImprimeVector()
{
for (int x = 0; x < 10; x++)
 {
 cout << "Numero [" << x << "]" << vec[x] << "\n";
 }
}

int main()
{
LlenaVector();

ImprimeVector();

}

/*
EVALUACI N UNIDAD 1�

Creado por : ANGEL EMMANUEL PEREZ DOLORES
Programa que cree 5 m todos, cada uno tendr una funci n diferentes [Los metodos� � �
ser n indicados por el docente] con las siguientes indicaciones: El programa �
incluir ciclo Do-While y Switch�
*/

#include <iostream>
using namespace std;

int vec[10];

void rectangulo()
{

cout<<"* * * * * * * *\n";
cout<<"* *\n";
cout<<"* *\n";
cout<<"* *\n";
cout<<"* * * * * * * *\n";

}

void parimpar()
{

int a,b;
cout<<"ingrese un numero\n";
cin>>a;
b=a%2;
if (b==0){

cout<< "numero es par\n";
}
else{

cout<< "numero es impar\n";
}

}

void tabla()
{

int num;
cout<<"que tabla de multiplicar deseas";
cin>>num;
for(int x=0; x<=10;x++)
{

cout<<x<<"*"<<num<<"= "<<num*x<<endl;
}

}

void promedio()
{

int num, calif, acumulador=0;
cout<<"Numero de unidades de la materia:\n";
cin>>num;
for(int x=1; x<=num;x++)
{

cout<<"teclee la calificacion"<<x<<"=";
cin>>calif;
if((calif>=0)&&(calif<=100))

{
acumulador=acumulador+calif;

}
else
{

cout<<"calificacion NO VALIDA\n";
x--;

}
}
cout<<"promedio es:"<<(acumulador/num)<<endl;
if(((acumulador/num)>=70)&&((acumulador/num)<=100))
{

cout<<"APROBADO\n";
}
else
{

cout<<" No aprobado\n";
}

}

void cinconum()
{

int num, contador=0;
do
{

cout<<"teclee un numero";
cin>> num;
if(num>=1000)
{

contador++;
}

}while(contador<5);
}

void llenarvector()
{

for(int x=0;x<10;x++){
cout<<"teclee valor["<<x<<"]->";
cin>>vec[x];

}
}

void imprimevector()
{

for(int x=0;x<10;x++){
cout<<"valor: "<<vec[x]<<"\n";

}
}

int main()
{

int OP;
char resp;
do
{

cout<<"***\n";
cout<<"* Menu *\n";
cout<<"* *\n";

cout<<"* 1.- presente un rectangulo *\n";
cout<<"* *\n";
cout<<"* 2.- Par/Impar *\n";
cout<<"* *\n";
cout<<"* 3.- Tabla de multiplicar *\n";
cout<<"* *\n";
cout<<"* 4.-Promedio(aprobado/reprobado) *\n";
cout<<"* *\n";
cout<<"* 5.- Imprimir solo 5 numeros *\n";
cout<<"* *\n";
cout<<"* 6.- Salir *\n";
cout<<"* *\n";
cout<<"***\n";

cout<<"Elija una opcion ";
cin>>OP;
switch(OP)
{

case 1:
{

cout<<"Eligio presentar un rectangulo\n";
rectangulo();
break;

}
case 2:

{
cout<<"Eligio Par/Impar\n";
parimpar();
break;

}
case 3:

{
cout<<"Eligio Tabla de multiplicar\n";
tabla();
break;

}
case 4:

{
cout<<"Eligio Promedio\n";
promedio();
break;

}
case 5:

{
cout<<"Eligio Imprimir 5 Numeros\n";
cinconum();
break;

}
case 6:

{
cout<<"eligio salir\n";
break;

}
default:
{

cout<<"No existe esa opci n--elija una opci n del � �
menu"<<endl;

}
}

}while(OP!=6);

}

