LISTA DE COTEJO PARA INVESTIGACION

Y

ITSSAT

INTITUTO TECNOLOGICO SUPERIOR DE SAN ANDRES TUXTLA
CARRERA: INGENIERIA INFORMATICA

DATOS GENERALES DEL PROCESO DE EVALUACION

Nombre(s) del alumno(s):

PEREZ DOLORES ANGEL EMMANUEL

Firma del alumno(s):

Producto: Nombre del Proyecto: Fecha:
| ti ién Unidad | Investigacion:Caracteristicas
nvestigacion Unida de la programacion orientada
a objetos
Asignatura: Grupo: Semestre:
Programacion Avanzada |311-A Tercero

Nombre del Docente:

Firma del Docente:

MTI Lorenzo de Jesus Organista Oliveros

INSTRUCCIONES

Revisar las actividades que se solicitan y marque en los apartados “SI” cuando la evidencia se cumple; en caso contrario
marque “NO”. En la columna OBSERVACIONES indicaciones que puedan ayudar al alumno a saber cudles son las

condiciones no cumplidas, si fuese necesario.

Valor del Caracteristicas a cumplir (Reactivo) CUMPLE | OBSERVACIONES
reactivo si | no
1% Presentacion. El trabajo cumple con los requisitos de : X
’ a. Buena presentacion
1% b. No tiene faltas de ortografia X
1% c. Mismo formato (letra arial 14, titulos con negritas) X
1% d. Misma calidad de hoja e impresion X
1% e. Maneja el lenguaje técnico apropiado X
Introduccidn y Objetivo. La introduccidn y el objetivo dan una idea
2% clara del contenido del trabajo, motivando al lector a continuar con X
su lectura y revision.
Sustento Tedrico. Presenta un panorama general del tema a
5% desarrollar y lo sustenta con referencias bibliograficas y cita X
correctamente a los autores.
Desarrollo. Sigue una metodologia y sustenta todos los pasos que
2% se realizaron al aplicar los conocimientos obtenidos, es analitico y X
bien ordenado.
2% Resultados. Cumplié totalmente con el objetivo esperado, tiene X
’ aplicaciones concretas.
2% Conclusiones. Las conclusiones son claras y acordes con el objetivo
? esperado.
2% Responsabilidad. Entrego el reporte en la fecha y hora sefialada.
20% CALIFICACION: 20%

Instituto Tecnoldgico
m Superior de San Andrés

Tuxtla

Ingenieria Mecatronica
Grupo: 311-B.

Materia:
Programacion Avanzada.

Investigacion - Unidad I

Docente:
M.T.I. Lorenzo de Jestus Organista Oliveros.

Alumno:
Angel Emmanuel Pérez Dolores

San Andrés Tuxtla Ver, a 19 de Septiembre del 2025.

Introduccion.

La Programacion Orientada a Objetos (POO) es uno de los paradigmas mas
utilizados en la informatica moderna. Se origin6 como una alternativa a la
programacion estructurada, ofreciendo un modelo mas cercano a la manera en la
que los seres humanos entendemos el mundo: mediante objetos que poseen
caracteristicas y realizan acciones. Este paradigma no solo facilita la construccién
de software complejo, sino que también promueve la reutilizacion, la escalabilidad
y el mantenimiento del codigo.

Programacion Orientada a Objetos (POO)

Es un modelo de programacion en el que el disefio de software se organiza
alrededor de datos u objetos, en vez de usar funciones y légica.

Un objeto es una entidad que combina datos (atributos o propiedades) y
comportamientos (métodos o funciones). Se puede definir como un campo de datos
con atributos y comportamientos unicos.

La principal caracteristica de este tipo de programacion es que soporta objetos, que
tienen un tipo o clase asociado. Esas clases pueden heredar atributos de una clase
superior o superclase. Por esa razon, este enfoque de programaciéon se utiliza en
programas grandes y complejos que se deben actualizar con cierta regularidad. Esta
forma de programar se inspira en la manera en que pensamos sobre el mundo real:
los objetos tienen caracteristicas y realizan acciones.

Caracteristicas de la programacion orientada a objetos

Las caracteristicas de la Programacion Orientada a Objetos (POO) son los
principios fundamentales que permiten organizar, reutilizar y mantener el cédigo de
manera eficiente.

Usos de clases.

Una clase en POO funciona como una plantilla o un modelo que define la estructura
y el comportamiento que seran comunes a un conjunto de objetos. Esta plantilla
especifica qué atributos (datos) y qué métodos (funciones o comportamientos)
deberan tener los objetos que se creen a partir de ella.

La clase determina las caracteristicas esenciales de los objetos, como sus
propiedades y capacidades, sin materializar ninguna entidad concreta. Por ejemplo,

Por ejemplo, una clase “Coche” podria definir atributos como “marca”, “modelo”, y
“color”, y métodos como “arrancar” y “detener”.

Objetos

Con la clase pueden crearse instancias de un objeto, es una instancia concreta de
una clase, es decir, algo creado a partir del molde, Cada objeto creado de la misma
clase puede tener caracteristicas diferentes. Cada objeto creado desde una misma
clase puede tener valores diferentes para sus atributos, pero todos compartiran la
misma estructura y comportamientos definidos por la clase.

Ambos conceptos estan relacionado ya que, la clase actua como un molde, mientras
que los objetos son las entidades reales creadas utilizando ese molde. Cada objeto
mantiene su propio estado, pero todos ellos siguen las directrices establecidas por
la clase de la que derivan.

4 principios de la Programacién Orientada a Objetos

La programacion orientada a objetos es mas compleja de estructurar, es por eso
que utiliza principios que pueden ayudar a escribir un codigo mejor, mas limpio y
reutilizable. Los principios de la Programacion Orientada a Objetos (POO) son las
bases que guian como se organiza y estructura el codigo en este paradigma.
Generalmente se consideran cuatro principios fundamentales (conocidos como los
pilares de la POO).

Encapsulacion.

La encapsulacion presenta toda la informacion importante de un objeto dentro del
mismo Yy solo expone la informacién elegida al mundo exterior. Significa ocultar los
detalles internos de un objeto y permitir el acceso solo mediante métodos
especificos. Esta propiedad nos permite asegurar que la informacion de un objeto
esté oculta para el mundo exterior, agrupando en una clase las caracteristicas o
atributos que tienen un acceso privado, y los comportamientos o métodos que
cuenta con un acceso publico.

El dnico modo en la que esta se puede modificar es a través los propios métodos
del objeto. De esta manera, los atributos internos de un objeto son ser inaccesibles
desde fuera, pudiéndose modificar sélo llamando a las funciones correspondientes.

Abstraccion.

Este principio consiste en simplificar la complejidad del mundo real modelando solo
los aspectos relevantes para un proposito particular, mientras se ocultan los detalles
innecesarios. La abstraccion permite a los desarrolladores concentrarse en lo que
es importante para la aplicacién, sin necesidad de entender cada detalle del
comportamiento o estado interno de los objetos. Esto reduce la complejidad y
mejora la comprensibilidad del cédigo.

Herencia.

a herencia permite que una clase derive o herede propiedades y comportamientos
de otra clase, conocida como su clase padre. Esto facilita la reutilizacion del codigo
y la extension de las funcionalidades existentes sin tener que reescribir mucho
codigo. Ademas, la herencia promueve la creacion de una jerarquia de clases que
puede reflejar relaciones naturales entre objetos mas amplios y especificos,
mejorando la organizacién del cddigo. Mediante la definicion en una clase de los
atributos y comportamientos basicos, pueden crearse clases secundarias,
ampliando la funcionalidad de la clase principal y anadiendo atributos y
comportamientos extra. Es una de las claves de la Programacién Orientada a
Objetos.

Poliformismo

Se refiere a la capacidad de un objeto para tomar varias formas y comportarse de
manera diferente en diferentes contextos, usando la misma interfaz. Esto se logra
mediante el uso de la herencia y la sobreescritura de métodos, permitiendo que un
mismo método tenga diferentes implementaciones en distintas clases. Gracias al
polimorfismo permite tratar objetos de diferentes clases de manera uniforme.

Ventajas de la Programacién Orientada a Objetos
Reutilizacion del Cédigo:

Como se habia mencionado, cuando se disenan correctamente las clases, se
pueden usar en distintas partes del programa y en diferentes proyectos. La técnica
de herencia ahorra tiempo porque permite crear una clase genérica y luego definir
las subclases que heredaran los rasgos de la misma, de manera que no es
necesario escribir esas funciones de nuevo. Ademas, al aplicar un cambio en la
clase, todas las subclases lo adoptaran automaticamente.

Modularidad.

Una de las caracteristicas de la programacion orientada a objetos mas interesantes
es la modularidad ya que asi un equipo puede trabajar en multiples objetos a la vez
mientras se minimizan las posibilidades de que un programador duplique la
funcionalidad de otro. El trabajo modular también permite dividir los problemas en
partes mas pequenas que se pueden probar de manera independiente

Conclusion

La Programacion Orientada a Objetos representa un avance significativo en la
historia de la programacién, al permitir un modelo mas natural, escalable y
reutilizable. Sus principios fundamentales, clases, objetos, encapsulamiento,
abstraccion, herencia y polimorfismo, han demostrado ser la base para el desarrollo
de sistemas complejos en multiples areas de la tecnologia. Por ello, la POO no solo
es un paradigma vigente, sino una herramienta indispensable en la formacién y
practica de todo programador actual.

Fuentes Consultadas.

Darias Perez, Sergio. (s.f.). Qué es la Programacion Orientada a Objetos. [Pagina
Web]. Intelequia. htips://intelequia.com/es/blog/post/qu%C3%A9-es-la-
programaci%C3%B3n-orientada-a-objetos

Universidad Europea. (2022, 24 de Agosto). Programacion orientada a objetos.
[Pagina Web]. https://universidadeuropea.com/blog/programacion-orientada-

objetos/

Valencia, Alonso. (2024, 9 de Mayo). ¢ Qué es la Programacién Orientada a Objetos
(POO) y cuales son sus principios fundamentales?. [Pagina Web].
CodersLink. https://coderslink.com/talento/blog/que-es-la-programacion-
orientada-a-objetos-poo-y-cuales-son-sus-principios-fundamentales/

https://intelequia.com/es/blog/post/qu%C3%A9-es-la-programaci%C3%B3n-orientada-a-objetos
https://intelequia.com/es/blog/post/qu%C3%A9-es-la-programaci%C3%B3n-orientada-a-objetos
https://universidadeuropea.com/blog/programacion-orientada-objetos/
https://universidadeuropea.com/blog/programacion-orientada-objetos/
https://coderslink.com/talento/blog/que-es-la-programacion-orientada-a-objetos-poo-y-cuales-son-sus-principios-fundamentales/
https://coderslink.com/talento/blog/que-es-la-programacion-orientada-a-objetos-poo-y-cuales-son-sus-principios-fundamentales/

m@ GUIA DE OBSERVACION PARA RESOLUCION DE EJERCICIOS PRACTICOS

ITSSAT

NOMBRE DE LA ASIGNATURA: Programacion Avanzada

NOMBRE DE LA UNIDAD: |ntroduccién

ALUMNO: PEREZ DOLORES ANGEL EMMANUEL

INSTRUCCIONES

Revisar los documentos o actividades que se solicitan y marque en los apartados “SI” cuando la
evidencia a evaluar se cumple; en caso contrario marque “NO”. En la columna “OBSERVACIONES”

ocupela cuando tenga que hacer comentarios referentes a lo observado.

Valor Caracteristicas a cumplir (Reactivo) CUMPLE | OBSERVACIONES
del _
reactivo Si NO
8% ¢ldentifico el problema planteado? X
4% ¢éldentifico los datos de entrada del problema? X
4% ¢ldentifico los datos de salida del problema? X
8% éGenerd la solucién del problema en forma claray X
) comprensible (orden)?
éElaboré el programa respetando la sintaxis del
12% . o, X
lenguaje de programacién (orden)?
Comprobd los resultados esperados a través de
4% o X
pruebas de escritorio?
40% CALIFICACION: 40%

/* PROGRAMACION AVANZADA

UNIDAD 1

ING.MECATRONICA. GRUPO:311-A

ALUMNO: PEREZ DOLORES ANGEL EMMANUEL

PROGRAMA 7

Utiliza vectores y metodos para el llenado de datos
*/

#include <iostream>
using namespace std;

int vec[10];

void LlenaVector()

{
for (int x = 0; X < 10 ; Xx++)
{
cout <<"TECLEA LOS NUMERO \n",;
cin >> vec[x];
}
}
void ImprimeVector()
{
for (int x = 0; x < 10; x++)
{
cout << "Numero [" << x << "]" << vec[x] << "\n";
}
}

int main()
LlenaVector();

ImprimeVector();

}

Titulo*
Evaluacion - Unidad |

*Obligatorio

Instrucciones (opcional)
-Realizar un programa que cree 5 métodos, cada uno tendra una funcién diferente [Los métodos seran indicados por el docente] con las
siguientes indicaciones:

- El programa incluira ciclo Do-While y Switch [Incluir el menu de los métodos] []

1.- Subir el cédigo fuente [EvaluacionUl.cpp]
2.- Una imagen [captura de pantalla del funcionamiento del programa]

B r U X

Adjuntar

o o - 2 @ () +

Drive YouTube Crear Subir Enlace NotebookLM Gem

/*
EVALUACI@N UNIDAD 1

Creado por : ANGEL EMMANUEL PEREZ DOLORES

Programa que cree 5 mé@todos, cada uno tendr€ una funci€n diferentes [Los metodos
sern indicados por el docente] con las siguientes indicaciones: El programa
incluir€ ciclo Do-While y Switch

*/

#include <iostream>
using namespace std;

int vec[10];

void rectangulo()

{ Cout<<ll* * *x * % * % *\nll;
cout<<"* *\n";
cout<<"* *\n";
cout<<"* *\n";
Cout<<ll* * * * * * * *\nll;

}

void parimpar()

{
int a,b;
cout<<"ingrese un numero\n";
cin>>a;
b=a%2;
if (b==0){

cout<< "numero es par\n";
}
else{

cout<< "numero es impar\n";
}

}

void tabla()

{ .
int num;
cout<<"que tabla de multiplicar deseas";
cin>>num;
for(int x=0; x<=10;Xx++)

{
cout<<x<<"*'"<<num<<"= "<<num*x<<endl;
}

}

void promedio()

{

int num, calif, acumulador=0;

cout<<"Numero de unidades de la materia:\n";

cin>>num;

for(int x=1; XxX<=num;X++)

{
cout<<"teclee la calificacion"<<x<<"=";
cin>>calif;
if((calif>=0)&&(calif<=100))

acumulador=acumulador+calif;

}

else

{
cout<<"calificacion NO VALIDA\n";
X--y

}

cout<<"promedio es:"<<(acumulador/num)<<endl;
if(((acumulador/num)>=70)&&((acumulador/num)<=100))

cout<<"APROBADO\Nn";

}
else
{
cout<<" No aprobado\n";
3
}
void cinconum()
{
int num, contador=0;
do
{
cout<<"teclee un numero";
cin>> num;
if(num>=1000)
contador++;
}
Iwhile(contador<5);
}
void 1llenarvector()
{
for(int x=0;x<10;x++){
cout<<"teclee valor["<<x<<"]->";
cin>>vec[x];
}
}
void imprimevector()
{
for(int x=0;x<10;x++){
cout<<"valor: "<<vec[x]<<"\n";
}
}
int main()
{
int OP;
char resp;
do
{

LLEE SR S0 30 b Sk b S I b b R S I I R I S I I I I S S I I I I R R n.,
cout<< \n";

cout<<"* Menu *\n";
cout<<"* *\n";

cout<<"* 1.- presente un rectangulo *\n";
cout<<"* *\n";
cout<<"* 2.- Par/Impar *\n";
cout<<"* *\n";
cout<<"* 3.- Tabla de multiplicar *\n";
cout<<"* *\n":
cout<<"* 4. -Promedio(aprobado/reprobado) *\n";
cout<<"* *\n";
cout<<"* 5.- Imprimir solo 5 numeros *\n";
cout<<"* *\n";
cout<<"* 6.- Salir *\n";
cout<<"* *\n";
COUt<<"***\n";

cout<<"Elija una opcion ";

cin>>0P;
switch(OP)
{

case 1:

{
cout<<"Eligio presentar un rectangulo\n";
rectangulo();
break;

}

case 2:

{
cout<<"Eligio Par/Impar\n";
parimpar();
break;

}

case 3:

{
cout<<"Eligio Tabla de multiplicar\n";
tabla();
break;

}

case 4:

{
cout<<"Eligio Promedio\n";
promedio();
break;

}

case 5:

{
cout<<"Eligio Imprimir 5 Numeros\n";
cinconum();
break;

}

case 6:

{ . .
cout<<"eligio salir\n";
break;

}

default:
{

cout<<"No existe esa opci@n--elija una opci€@n del
menu''<<endl;

}while(OP!=6);

