

INSTITUTO TECNOLÓGICO
SUPERIOR DE SAN ANDRÉS

TUXTLA

INGENIERÍA MECATRÓNICA

GRUPO 311-A

MATERIA:

PROGRAMACION AVANZADA

ACTIVIDAD:

INVESTIGACIÓN UNIDAD 1

INTRODUCCION

DOCENTE:

LORENZO DE JESUS ORGANISTA OLIVEROS

ALUMNO:

CARLOS MARTIN JEREZANO JARA

SAN ANDRES TUXTLA, VER. Fecha: 20 de septiembre de 2025

Índice
1. Componentes Principales en la POO 2

1.1. Clases y objetos . 2
1.2. Métodos y atributos . 2
1.3. Constructores y destructores . 2
1.4. Interfaces y clases abstractas . 3

2. Ventajas y Limitaciones de la POO 3
2.1. Productividad y mantenimiento . 3
2.2. Complejidad inicial de aprendizaje . 3
2.3. Rendimiento en comparación con otros paradigmas . 3

3. Componentes Principales en la POO 3
3.1. Clases y objetos . 3
3.2. Métodos y atributos . 4
3.3. Constructores y destructores . 4
3.4. Interfaces y clases abstractas . 4

4. Ventajas y Limitaciones de la POO 5
4.1. Productividad y mantenimiento . 5
4.2. Complejidad inicial de aprendizaje . 5
4.3. Rendimiento en comparación con otros paradigmas . 5

5. Comparación con Otros Paradigmas 5
5.1. Programación estructurada . 5
5.2. Programación funcional . 6
5.3. Programación orientada a eventos . 6
5.4. Diferencias clave . 6

6. Conclusión 6

7. Bibliografía 6

1

1. Componentes Principales en la POO

1.1. Clases y objetos

Las clases son moldes que definen atributos y métodos. Los objetos son instancias de esas clases.
Ejemplo en Java:

class Persona {
String nombre;
int edad;

}
public class Main {

public static void main(String [] args) {
Persona p = new Persona ();
p.nombre = "Carlos";
p.edad = 20;

}
}

1.2. Métodos y atributos

Atributos: almacenan el estado de un objeto.

Métodos: definen el comportamiento.

Ejemplo en Python:

class Coche:
def __init__(self , marca , modelo):

self.marca = marca
self.modelo = modelo

def arrancar(self):
print(f"El {self.marca} {self.modelo} ha arrancado.")

c1 = Coche("Toyota", "Corolla")
c1.arrancar ()

1.3. Constructores y destructores

Los constructores inicializan objetos. Los destructores liberan recursos.
Ejemplo en C++:

#include <iostream >
using namespace std;

class Persona {
public:

Persona () { cout << "Objeto creado\n"; }
~Persona () { cout << "Objeto destruido\n"; }

};

int main() {
Persona p;

}

2

1.4. Interfaces y clases abstractas

Clases abstractas: definen métodos que deben implementarse en clases hijas.

Interfaces: definen contratos que aseguran consistencia.

Ejemplo en Java:
interface Animal {

void hacerSonido ();
}
class Perro implements Animal {

public void hacerSonido () {
System.out.println("Guau guau!");

}
}

2. Ventajas y Limitaciones de la POO

2.1. Productividad y mantenimiento

La POO incrementa la productividad al permitir reutilización y modularidad.
Ejemplo: una clase Empleado puede extenderse para crear Gerente, sin reescribir código base.

2.2. Complejidad inicial de aprendizaje

Al inicio, conceptos como herencia, polimorfismo y encapsulamiento pueden resultar difíciles.
Ejemplo en Python:

class Figura:
def area(self):

pass

class Circulo(Figura):
def __init__(self , radio):

self.radio = radio
def area(self):

return 3.14 * self.radio **2

Este ejemplo muestra herencia y polimorfismo, que requieren tiempo para dominar.

2.3. Rendimiento en comparación con otros paradigmas

La creación de múltiples objetos puede consumir más memoria que la programación estructurada. Sin
embargo, las ventajas en diseño suelen compensarlo.

Ejemplo de instanciación masiva en C++:
for(int i=0; i <1000000; i++) {

Persona *p = new Persona ();
delete p;

}

3. Componentes Principales en la POO

3.1. Clases y objetos

Las clases son moldes que definen atributos y métodos. Los objetos son instancias de esas clases.
Ejemplo en Java:

3

class Persona {
String nombre;
int edad;

}
public class Main {

public static void main(String [] args) {
Persona p = new Persona ();
p.nombre = "Carlos";
p.edad = 20;

}
}

3.2. Métodos y atributos

Atributos: almacenan el estado de un objeto.

Métodos: definen el comportamiento.

Ejemplo en Python:

class Coche:
def __init__(self , marca , modelo):

self.marca = marca
self.modelo = modelo

def arrancar(self):
print(f"El {self.marca} {self.modelo} ha arrancado.")

c1 = Coche("Toyota", "Corolla")
c1.arrancar ()

3.3. Constructores y destructores

Los constructores inicializan objetos. Los destructores liberan recursos.
Ejemplo en C++:

#include <iostream >
using namespace std;

class Persona {
public:

Persona () { cout << "Objeto creado\n"; }
~Persona () { cout << "Objeto destruido\n"; }

};

int main() {
Persona p;

}

3.4. Interfaces y clases abstractas

Clases abstractas: definen métodos que deben implementarse en clases hijas.

Interfaces: definen contratos que aseguran consistencia.

Ejemplo en Java:

4

interface Animal {
void hacerSonido ();

}
class Perro implements Animal {

public void hacerSonido () {
System.out.println("Guau guau!");

}
}

4. Ventajas y Limitaciones de la POO

4.1. Productividad y mantenimiento

La POO incrementa la productividad al permitir reutilización y modularidad.
Ejemplo: una clase Empleado puede extenderse para crear Gerente, sin reescribir código base.

4.2. Complejidad inicial de aprendizaje

Al inicio, conceptos como herencia, polimorfismo y encapsulamiento pueden resultar difíciles.
Ejemplo en Python:

class Figura:
def area(self):

pass

class Circulo(Figura):
def __init__(self , radio):

self.radio = radio
def area(self):

return 3.14 * self.radio **2

Este ejemplo muestra herencia y polimorfismo, que requieren tiempo para dominar.

4.3. Rendimiento en comparación con otros paradigmas

La creación de múltiples objetos puede consumir más memoria que la programación estructurada. Sin
embargo, las ventajas en diseño suelen compensarlo.

Ejemplo de instanciación masiva en C++:

for(int i=0; i <1000000; i++) {
Persona *p = new Persona ();
delete p;

}

5. Comparación con Otros Paradigmas

5.1. Programación estructurada

Se basa en procedimientos y funciones, con enfoque en la secuencia de instrucciones.
Ejemplo en C:

#include <stdio.h>

int suma(int a, int b) {
return a + b;

5

}

int main() {
int r = suma(3, 4);
printf("Resultado: %d", r);
return 0;

}

5.2. Programación funcional

Se centra en funciones puras y ausencia de estado.
Ejemplo en Haskell:

suma :: Int -> Int -> Int
suma a b = a + b

main = print (suma 3 4)

5.3. Programación orientada a eventos

Se organiza alrededor de eventos y manejadores de eventos.
Ejemplo en JavaScript:

document.getElementById ("btn").addEventListener ("click", () => {
alert(" Botn presionado !");

});

5.4. Diferencias clave

La estructurada favorece la claridad en secuencias.

La funcional enfatiza inmutabilidad y expresividad matemática.

La orientada a eventos responde dinámicamente a entradas del usuario.

La POO modela el mundo real con objetos y relaciones.

6. Conclusión
La Programación Orientada a Objetos se ha consolidado como paradigma dominante en la in-

dustria del software, gracias a su capacidad para modelar sistemas complejos, fomentar la reutilización y
facilitar el mantenimiento.

Hoy en día, aunque la programación funcional moderna (ej. en Scala, Kotlin, Python) ha ganado
fuerza, la POO sigue siendo indispensable en aplicaciones empresariales, videojuegos, inteligencia artificial
y sistemas embebidos.

En el futuro, es probable que surja un paradigma híbrido donde convivan la POO y la programación
funcional, integrando lo mejor de ambos enfoques.

7. Bibliografía
Booch, G. (1994). Object-Oriented Analysis and Design. Addison-Wesley.

Lafore, R. (2002). Object-Oriented Programming in C++. Sams Publishing.

Eckel, B. (2006). Thinking in Java. Prentice Hall.

6

Documentación oficial:

• Python

• Java

• C++

• C#

7

https://docs.python.org/3/
https://docs.oracle.com/en/java/
https://en.cppreference.com/
https://learn.microsoft.com/en-us/dotnet/csharp/

/* PROGRAMACION AVANZADA
UNIDAD 1
ING.MECATRONICA. GRUPO:311-A
ALUMNO: CARLOS MARTIN JEREZANO JARA
PROGRAMA 7
Utiliza vectores y metodos para el llenado de datos
*/

#include <iostream>
using namespace std;

int vec[10];

void LlenaVector()
{
for (int x = 0; x < 10 ; x++)
 {
 cout <<"TECLEA LOS NUMERO \n";
 cin >> vec[x];
 }
}

void ImprimeVector()
{
for (int x = 0; x < 10; x++)
 {
 cout << "Numero [" << x << "]" << vec[x] << "\n";
 }
}

int main()
{
LlenaVector();

ImprimeVector();

}

/* PROGRAMACION AVANZADA - UNIDAD 1
ING. MECATRONICA GRUPO:311-A
ALUMNO: CARLOS MARTIN JEREZANO JARA

ESTE PROGRAMA PIDE EL NUMERO DE FILAS E IMPRIME * INCIANDO POR EL NUMERO ASIGNADO Y
DISMINUYENDO PROGRESIVAMENRTE
*/

#include <iostream>
using namespace std;

int main()
{
 int n;
 cout << " Teclee un numero:\n";
 cin >> n;

 for(int i=n; i>=1; i--)
 {

 for (int j=1;j<=i; j++) //j es igual a 1, siempre que j sea igual o
menor que i j va aunmentar de 1 en uno e imprime *
 {
 cout << "*";
 }
 cout <<"\n";

 }

}

