LISTA DE COTEJO PARA INVESTIGACION

Y

ITSSAT

INTITUTO TECNOLOGICO SUPERIOR DE SAN ANDRES TUXTLA
CARRERA: INGENIERIA INFORMATICA

DATOS GENERALES DEL PROCESO DE EVALUACION

Nombre(s) del alumno(s):

JEREZANO JARA CARLOS MARTIN

Firma del alumno(s):

Producto: Nombre del Proyecto: Fecha:
| ti ién Unidad | Investigacion:Caracteristicas
nvestigacion Unida de la programacion orientada
a objetos
Asignatura: Grupo: Semestre:
Programacion Avanzada |311-A Tercero

Nombre del Docente:

Firma del Docente:

MTI Lorenzo de Jesus Organista Oliveros

INSTRUCCIONES

Revisar las actividades que se solicitan y marque en los apartados “SI” cuando la evidencia se cumple; en caso contrario
marque “NO”. En la columna OBSERVACIONES indicaciones que puedan ayudar al alumno a saber cudles son las

condiciones no cumplidas, si fuese necesario.

Valor del Caracteristicas a cumplir (Reactivo) CUMPLE | OBSERVACIONES
reactivo si | no
1% Presentacion. El trabajo cumple con los requisitos de : X
’ a. Buena presentacion
1% b. No tiene faltas de ortografia X
1% c. Mismo formato (letra arial 14, titulos con negritas) X
1% d. Misma calidad de hoja e impresion X
1% e. Maneja el lenguaje técnico apropiado X
Introduccidn y Objetivo. La introduccidn y el objetivo dan una idea
2% clara del contenido del trabajo, motivando al lector a continuar con X
su lectura y revision.
Sustento Tedrico. Presenta un panorama general del tema a
5% desarrollar y lo sustenta con referencias bibliograficas y cita X
correctamente a los autores.
Desarrollo. Sigue una metodologia y sustenta todos los pasos que
2% se realizaron al aplicar los conocimientos obtenidos, es analitico y X
bien ordenado.
2% Resultados. Cumplié totalmente con el objetivo esperado, tiene X
’ aplicaciones concretas.
2% Conclusiones. Las conclusiones son claras y acordes con el objetivo
? esperado.
2% Responsabilidad. Entrego el reporte en la fecha y hora sefialada.
20% CALIFICACION: 20%

INSTITUTO TECNOLOGICO
SUPERIOR DE SAN ANDRES
TUXTLA

INGENIERIA MECATRONICA

GRUPO 311-A

MATERIA:

PROGRAMACION AVANZADA

ACTIVIDAD:

INVESTIGACION UNIDAD 1

INTRODUCCION

DOCENTE:

LORENZO DE JESUS ORGANISTA OLIVEROS

ALUMNO:

CARLOS MARTIN JEREZANO JARA

SAN ANDRES TUXTLA, VER. Fecha: 20 de septiembre de 2025

Indice

[1. Componentes Principales en la POO)|
[1.1. Clases y objetos| e e
[1.2. Métodos y atributos| e e
[1.3. Constructores y destructores|
[1.4. Interfaces y clases abstractas|. o

[2. Ventajas y Limitaciones de la POOQO)|
[2.1. Productividad y mantenimiento|
[2.2. Complejidad 1nicial de aprendizajel
[2.3. Rendimiento en comparacion con otros paradigmas|

[3. Componentes Principales en la POQ]|
[3.1. Clases y objetos|
[3.2. Métodos y atributos|
[3.3. Constructores v destructores| e
[3.4. Interfaces y clases abstractas|. o

[4. Ventajas y Limitaciones de la POO)|
[4.1. Productividad y mantenimiento|
[4.2. Complejidad inicial de aprendizajel L
[4.3. Rendimiento en comparacion con otros paradigmas|

[5. Comparaciéon con Otros Paradigmas|
[5.1. Programacion estructuradal.
[5.2. Programacion funcional.o

6. C Tusionl
|: . Bl[ihograhal

ot ot ot OV =~ e o W w w w W WMo NNDN

D O O Ut Ot

=

1. Componentes Principales en la POO

1.1. Clases y objetos

Las clases son moldes que definen atributos y métodos. Los objetos son instancias de esas clases.
Ejemplo en Java:

class Persona {
String nombre;
int edad;
}
public class Main {
public static void main(Stringl([] args) {
Persona p = new Persona();
p.nombre = "Carlos";
p.edad = 20;

1.2. Meétodos y atributos

= Atributos: almacenan el estado de un objeto.

s Métodos: definen el comportamiento.

Ejemplo en Python:

class Coche:

def __init__(self, marca, modelo):
self .marca = marca
self .modelo = modelo

def arrancar(self):
print (£"E1 {self.marca} {self.modelo} ha arrancado.")

cl = Coche("Toyota", "Corolla")
cl.arrancar ()

1.3. Constructores y destructores

Los constructores inicializan objetos. Los destructores liberan recursos.
Ejemplo en C++:

#include <iostream>
using namespace std;

class Persona {

public:
Persona() { cout << "Objeto creado\n"; }
“Persona() { cout << "QObjeto destruidol\n"; }
s

int main() {
Persona p;

1.4. Interfaces y clases abstractas
= Clases abstractas: definen métodos que deben implementarse en clases hijas.
= Interfaces: definen contratos que aseguran consistencia.

Ejemplo en Java:

interface Animal {
void hacerSonido () ;
}
class Perro implements Animal {
public void hacerSonido () {
System.out.println("Guau guau!");

}

2. Ventajas y Limitaciones de la POO

2.1. Productividad y mantenimiento

La POO incrementa la productividad al permitir reutilizaciéon y modularidad.
Ejemplo: una clase Empleado puede extenderse para crear Gerente, sin reescribir codigo base.

2.2. Complejidad inicial de aprendizaje

Al inicio, conceptos como herencia, polimorfismo y encapsulamiento pueden resultar dificiles.
Ejemplo en Python:

class Figura:
def area(self):
pass

class Circulo(Figura):
def __init__(self, radio):
self .radio = radio
def area(self):
return 3.14 * self.radio**2

Este ejemplo muestra herencia y polimorfismo, que requieren tiempo para dominar.

2.3. Rendimiento en comparacién con otros paradigmas

La creacién de multiples objetos puede consumir mas memoria que la programacion estructurada. Sin
embargo, las ventajas en diseno suelen compensarlo.
Ejemplo de instanciacion masiva en C++:

for(int i=0; i<1000000; i++) {
Persona *p = new Persona();
delete p;

3. Componentes Principales en la POO

3.1. Clases y objetos

Las clases son moldes que definen atributos y métodos. Los objetos son instancias de esas clases.
Ejemplo en Java:

class Persona {
String nombre;
int edad;
}
public class Main {
public static void main(String[] args) {
Persona p = new Persona();
p.nombre = "Carlos";
p.edad = 20;

3.2. Meétodos y atributos

= Atributos: almacenan el estado de un objeto.

= Métodos: definen el comportamiento.

Ejemplo en Python:

class Coche:

def __init__(self, marca, modelo):
self .marca = marca
self .modelo = modelo

def arrancar(self):
print (£"E1 {self.marca} {self.modelo} ha arrancado.")

cl = Coche("Toyota", "Corolla")
cl.arrancar ()

3.3. Constructores y destructores

Los constructores inicializan objetos. Los destructores liberan recursos.
Ejemplo en C++:

#include <iostream>
using namespace std;

class Persona {

public:
Persona() { cout << "Objeto creado\n"; }
“"Persona() { cout << "Objeto destruido\n"; }
3

int main() {
Persona p;

3.4. Interfaces y clases abstractas

= Clases abstractas: definen métodos que deben implementarse en clases hijas.

= Interfaces: definen contratos que aseguran consistencia.

Ejemplo en Java:

interface Animal {
void hacerSonido () ;
}
class Perro implements Animal {
public void hacerSonido () {
System.out.println("Guau guau!");

}

4. Ventajas y Limitaciones de la POO

4.1. Productividad y mantenimiento

La POO incrementa la productividad al permitir reutilizaciéon y modularidad.
Ejemplo: una clase Empleado puede extenderse para crear Gerente, sin reescribir codigo base.

4.2. Complejidad inicial de aprendizaje

Al inicio, conceptos como herencia, polimorfismo y encapsulamiento pueden resultar dificiles.
Ejemplo en Python:

class Figura:
def area(self):
pass

class Circulo(Figura):
def __init__(self, radio):
self.radio = radio
def area(self):
return 3.14 * self.radiox*x2

Este ejemplo muestra herencia y polimorfismo, que requieren tiempo para dominar.

4.3. Rendimiento en comparacion con otros paradigmas

La creacion de multiples objetos puede consumir més memoria que la programacion estructurada. Sin
embargo, las ventajas en diseno suelen compensarlo.
Ejemplo de instanciaciéon masiva en C++:

for (int i=0; i<1000000; i++) {
Persona *p = new Persona();
delete p;

5. Comparacion con Otros Paradigmas

5.1. Programacién estructurada

Se basa en procedimientos y funciones, con enfoque en la secuencia de instrucciones.
Ejemplo en C:

#include <stdio.h>

int suma(int a, int b) {
return a + b;

¥

int main() A
int r = suma(3, 4);
printf ("Resultado: %d", r);
return O;

5.2. Programaciéon funcional

Se centra en funciones puras y ausencia de estado.
Ejemplo en Haskell:

suma :: Int -> Int -> Int
suma a b = a + b
main = print (suma 3 4)

5.3. Programacién orientada a eventos

Se organiza alrededor de eventos y manejadores de eventos.
Ejemplo en JavaScript:

document .getElementById ("btn") .addEventListener ("click",
alert (" Botn presionado!");

O

5.4. Diferencias clave

» La estructurada favorece la claridad en secuencias.

La funcional enfatiza inmutabilidad y expresividad matematica.

La POO modela el mundo real con objetos y relaciones.

6. Conclusion

La Programaciéon Orientada a Objetos se ha consolidado como paradigma dominante en la in-
dustria del software, gracias a su capacidad para modelar sistemas complejos, fomentar la reutilizacion y

facilitar el mantenimiento.

Hoy en dia, aunque la programacion funcional moderna (ej. en Scala, Kotlin, Python) ha ganado
fuerza, la POO sigue siendo indispensable en aplicaciones empresariales, videojuegos, inteligencia artificial

y sistemas embebidos.

En el futuro, es probable que surja un paradigma hibrido donde convivan la POO y la programacion

funcional, integrando lo mejor de ambos enfoques.

7. Bibliografia

» Booch, G. (1994). Object-Oriented Analysis and Design. Addison-Wesley.

La orientada a eventos responde dinamicamente a entradas del usuario.

» Lafore, R. (2002). Object-Oriented Programming in C++. Sams Publishing.

» Eckel, B. (2006). Thinking in Java. Prentice Hall.

I

s Documentacion oficial:

e Python
e |Java

o C++
o C#

https://docs.python.org/3/
https://docs.oracle.com/en/java/
https://en.cppreference.com/
https://learn.microsoft.com/en-us/dotnet/csharp/

m@ GUIA DE OBSERVACION PARA RESOLUCION DE EJERCICIOS PRACTICOS

ITSSAT

NOMBRE DE LA ASIGNATURA: Programacion Avanzada

NOMBRE DE LA UNIDAD: |ntroduccién

ALUMNO: JEREZANO JARA CARLOS MARTIN

INSTRUCCIONES

Revisar los documentos o actividades que se solicitan y marque en los apartados “SI” cuando la
evidencia a evaluar se cumple; en caso contrario marque “NO”. En la columna “OBSERVACIONES”

ocupela cuando tenga que hacer comentarios referentes a lo observado.

Valor Caracteristicas a cumplir (Reactivo) CUMPLE | OBSERVACIONES
del _
reactivo Si NO
8% ¢ldentifico el problema planteado? X
4% ¢éldentifico los datos de entrada del problema? X
4% ¢ldentifico los datos de salida del problema? X
8% éGenerd la solucién del problema en forma claray X
) comprensible (orden)?
éElaboré el programa respetando la sintaxis del
12% . o, X
lenguaje de programacién (orden)?
Comprobd los resultados esperados a través de
4% o X
pruebas de escritorio?
40% CALIFICACION: 40%

/* PROGRAMACION AVANZADA

UNIDAD 1

ING.MECATRONICA. GRUPO:311-A

ALUMNO: CARLOS MARTIN JEREZANO JARA

PROGRAMA 7

Utiliza vectores y metodos para el llenado de datos
*/

#include <iostream>
using namespace std;

int vec[10];

void LlenaVector()

{
for (int x = 0; X < 10 ; Xx++)
{
cout <<"TECLEA LOS NUMERO \n",;
cin >> vec[x];
}
}
void ImprimeVector()
{
for (int x = 0; x < 10; x++)
{
cout << "Numero [" << x << "]" << vec[x] << "\n";
}
}

int main()
LlenaVector();

ImprimeVector();

}

Titulo*
Evaluacion - Unidad |

*Obligatorio

Instrucciones (opcional)
-Realizar un programa que cree 5 métodos, cada uno tendra una funcién diferente [Los métodos seran indicados por el docente] con las
siguientes indicaciones:

- El programa incluira ciclo Do-While y Switch [Incluir el menu de los métodos] []

1.- Subir el cédigo fuente [EvaluacionUl.cpp]
2.- Una imagen [captura de pantalla del funcionamiento del programa]

B r U X

Adjuntar

o o - 2 @ () +

Drive YouTube Crear Subir Enlace NotebookLM Gem

/* PROGRAMACION AVANZADA - UNIDAD 1
ING. MECATRONICA GRUPO:311-A
ALUMNO: CARLOS MARTIN JEREZANO JARA

ESTE PROGRAMA PIDE EL NUMERO DE FILAS E IMPRIME * INCIANDO POR EL NUMERO ASIGNADO Y
DISMINUYENDO PROGRESIVAMENRTE
*/

#include <iostream>
using namespace std;

int main()

int n;
cout << " Teclee un numero:\n";
cin >> n;

for(int i=n; i>=1; i--)

for (int j=1,;j<=i; j++) //j es igual a 1, siempre que j sea igual o
menor que i j va aunmentar de 1 en uno e imprime *

{
COUt << II*II;
}
cout <<"\n";
}

