INSTITUTO TECNOLOGICO SUPERIOR
DE SAN ANDRES TUXTLA (L.T.S.S.A.T.)

DIVISION INGENIERIA MECATRONICA
IMCT-2010-229
MICROCONTROLADORES

DOCENTE

Dr. José Angel Nieves Vézquez
711-A

UNIDAD V
PROGRAMACION DE PERIFERICOS DEL
MICROCONTROLADOR

INVESTIGACIAON

PRESENTAN
Juan José Jiménez Reyes 22100541
Juan José Marcial Fiscal 22100547
Polito Ceron Miguel de Jesus 22100552
Quino Caixba Perla Joselin 22100555
Teoba Herrera Rocio 22100562

SAN ANDRES TUXTLA, VER. A 01 DE DICIEMBRE DE 2025 TR

INDICE

INTRODUCCION . . . o e ot ettt e e e e e eneeaeseseenenenenesesesneenenenennnns 3
5.1 DESCRIPCION DEL MODULO CCP.vuueueeneeeeneenaenenesneenennennns 4
5.2 CONFIGURACION Y PROGRAMACION DEL MODULO CCP COMO COMPARADOR. 9
5.3 CONFIGURACION Y PROGRAMACION COMO CAPTURAueuueuennennnnnnn. 14
5.4 CONFIGURACION Y PROGRAMACION COMO PWMceueuueenneennennnennn 24
5.5 DESARROLLO DE APLICACIONES. uuueeneeuneeneeoneenneeneennnnnn 31
CONCLUSION . . .« oot ee et et et etee e aeeeeneneneneseseseenenenenaneenns 43

BIBLIOGRAFIA . .. it tit ettt et teeeeeneeneeeeneeneeesneeneeneneenannns 44

INTRODUCCION

En el ambito de los sistemas embebidos, la eficiencia de un disefio no se mide solo por la
velocidad de procesamiento, sino por la capacidad del microcontrolador para gestionar
eventos temporales y sefales externas de manera autobnoma. La presente investigacion aborda
la unidad tematica 5: "Programacion del mdédulo CCP del microcontrolador', un
periférico multifuncional que integra las capacidades de Captura, Comparacion y PWM

(Modulacion por Ancho de Pulso).

El estudio comienza con la descripcion del modulo (5.1), detallando su arquitectura interna
y su dependencia critica de los recursos de temporizacion (Timers), lo cual sienta las bases
para comprender sus tres modos operativos. Se analizara profundamente la Configuracion
como Comparador (5.2), esencial para la generacion de eventos temporales precisos, y la
Configuracion como Captura (5.3), que permite medir intervalos de sefiales externas con
exactitud de hardware. Asimismo, se examina el modo PWM (5.4), una herramienta estandar
en la industria para el control de potencia y motores, donde la relacion entre frecuencia y
ciclo de trabajo es vital. Finalmente, el informe integra estos conceptos en el Desarrollo de
aplicaciones (5.5), demostrando como la correcta programacion de registros como
CCPxCON y CCPRx permite descargar a la CPU de tareas repetitivas, optimizando el

rendimiento global del sistema.

5.1 DESCRIPCION DEL MODULO CCP.

El médulo CCP se caracteriza por su versatilidad, lograda a través de una arquitectura
configurable que comparte recursos fisicos para realizar tres funciones distintas. En la
mayoria de los dispositivos de gama media, como el PIC16F887 o el PIC16F877A, se
encuentran dos instancias de este modulo: CCP1 y CCP2. Aunque funcionalmente idénticos
en su operacion basica, su integracion con el resto del microcontrolador presenta matices

importantes.

pve
_ F
FET | controlador
Controlador _}_1 #‘{ B {x"ﬂ_ S
rw*w.._____.h t | - e
- T ,
| Consut n]'lldnr
— 1 - FET
FET | Controlador
Controlador - r q -
[~ “m__:__ F k Fy r_‘l’I‘ — lf:w““mJ‘
L,-""#H | JI_I L .
[I
Iy]

El Nucleo del Modulo: Registro de 16 bits

En el centro de la arquitectura del médulo CCP reside un registro de datos de 16 bits. Dado
que los microcontroladores PIC de 8 bits (como las series PIC10, PIC12, PIC16 y PIC18)
operan con un bus de datos de 8 bits, este registro de 16 bits se divide fisicamente en dos

registros de funciones especiales (SFR) de 8 bits cada uno:

e CCPRxL (CCP Register Low): Contiene los 8 bits menos significativos.

o CCPRxH (CCP Register High): Contiene los 8 bits mas significativos.

Bits of CCP1CON Register frf/ —
i/

!
NN
F !

[
|
|

TMR2=PR2

v |
CCPR1H i]
! i Pin

Comparator RC2/CCP1

x

TMR2

TRISC,2

____'3!'*_?_“:‘?_15 Bits T2CKS1, T2CKPS0
of T2CON register
(Timer T2 prescaler)

Donde 'X' representa el nimero del médulo (1 o 2).

La funcién de este par de registros es polimorfica; su comportamiento cambia radicalmente

segun el modo seleccionado en el registro de control CCPxCON :

1. En Modo Captura: El par CCPRxH:CCPRxL actiia como un registro de destino.
Esta conectado internamente al bus de datos del Timer1 (o Timer3 en PIC18). Cuando
un evento de disparo ocurre en el pin fisico, el hardware transfiere instantdineamente

el valor del temporizador a estos registros, "capturando" el tiempo del evento.

2. En Modo Comparacion: El par actia como un registro de comparacion. El usuario
carga un valor de tiempo objetivo en ellos. Un comparador digital de hardware
monitorea constantemente la igualdad entre este registro y el temporizador del

sistema.

3. En Modo PWM: La arquitectura cambia. El registro de 16 bits se utiliza para
almacenar el ciclo de trabajo (Duty Cycle). Sin embargo, aqui ocurre una
particularidad: CCPRxL almacena los 8 bits mas significativos del ciclo de trabajo,
mientras que CCPRxH se convierte en un registro de "sombra" (shadow register) o
buffer de lectura solamente, gestionado por el hardware para evitar glitches durante
las transiciones de pulso. Los 2 bits menos significativos del ciclo de trabajo se
reubican en el registro de control CCPxCON, logrando asi una resolucion de 10

bits.

Pines de Entrada y Salida (Multiplexacion)

El modulo CCP interactua con el mundo exterior a través de pines fisicos. Debido a la
limitacion de pines en los encapsulados, estos pines estan multiplexados con otras funciones,

generalmente puertos de E/S digitales.

e CCP1: Tipicamente asignado al pin RC2 (Puerto C, bit 2).

niciodela) |1] Bit de bandera CCP2IF

conversion A/D &
+
Reinicio del CCE‘R2

!

temporizador T1

| ccPr2H || ccpraL

|

E S
LS I 5 de control Comparador
=‘=’ 4>
[P
cePzaa | TMR1H || TMRIL
TRISC,1 CCP2M2 . v 4
CCP2M1 TMR1

CCP2zMO

e CCP2: Tipicamente asignado al pin RC1 (Puerto C, bit 1).

1] Bit de bandera CCP1IF

o
o
c 3! Pre-escalador
T % CCIf’R1
3 11, 1/4, 1/16 - - "
'r CCPR1H || ccPriL |.
o x"'/\\\ \\"-O
Deteccion Captura “ ~+ l'l%
— .~ s l —
de flanco >3 Ldf] L}J ;" £
5 TMRIH || TMRiL |
CCP1M3 ' i
CCP1M2 TMRA1
CCP1M1
CCP1MO

Es crucial notar que en ciertos dispositivos, como el PIC16F887 o PIC18F4550, el pin del
moédulo CCP2 puede ser reconfigurado o "movido" a otro pin (como RB3) mediante bits de
configuracion (Configuration Bits o Fuses) al momento de programar el chip. Esto otorga
flexibilidad al disefiador de PCB (Printed Circuit Board) para facilitar el enrutamiento de

pistas.

Consideracion de Hardware: Para que el médulo CCP funcione, el registro de direccion de

datos (TRIS) correspondiente al pin debe configurarse correctamente.
e En Modo Captura, el pin debe ser configurado como Entrada (TRIS = 1).

e En Modos Comparacion y PWM, el pin debe ser configurado como Salida (TRIS
= 0). Si se configura como entrada en estos modos, la operacion logica interna

ocurrira, pero la sefial no sera visible en el pin fisico.

Analisis Detallado de los Registros de Control

La "Programacion del modulo CCP" (Tema 5 del syllabus) se realiza fundamentalmente
manipulando los bits de los registros de control. Un entendimiento superficial de estos bits

lleva a implementaciones erréneas. A continuacion, se presenta un analisis exhaustivo del

registro CCPxCON.

CCP Module for PIC18F4520

e Compare/Capture/PWM modules
2 Modules available (ECCP1 and CCP2)
e Registers involved are
16 bit CCPRx (CCPR1, CCPR2)
CCPxCON(CCP1CON, CCP2CON)

7| 6 5 4 3 2 1 0
- | - | DCxB1 | DCxBO | CCPxM3 | CCPxM2 | CCPxM1 | CCPxMO

CCP2CON Register
DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCPx Module
Capture mode:
Unused.
Compare mode:

Unused.

M mode: 2
These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs docsity.com
(DCxB<9:2>) of the dutv cvcle are found in CCPRxL

5.2 CONFIGURACION Y
PROGRAMACION DEL MODULO CCP
COMO COMPARADOR.

El médulo CCP (Capture/Compare/PWM) representa uno de los periféricos mas versatiles y
robustos incorporados en microcontroladores de arquitectura de 8 y 16 bits, especialmente en
dispositivos de la familia PIC. Su finalidad es asistir en operaciones criticas de temporizacion y
control que exigen una respuesta deterministica y con baja latencia. Dentro de sus tres modos de
operacion, el modo Comparador destaca por permitir la generaciéon de eventos basados en
coincidencias entre un temporizador y un valor previamente configurado por el usuario, lo cual
facilita la creacion de secuencias temporales exactas, sefiales de control y mecanismos de

sincronizacion entre modulos internos y externos del sistema.

Este modo opera apoyandose en un temporizador de 16 bits, comunmente TMR1, el cual actiia como
base de tiempo. Los valores de comparacion se almacenan en el registro CCPRx, compuesto por
CCPRxH y CCPRxL. Cuando la cuenta del temporizador coincide con el valor configurado en
CCPRx, el hardware produce un evento inmediato, ya sea una interrupcion, un cambio de estado en
el pin CCP o la ejecucion de una funcion especial. Debido a que el proceso ocurre sin intervencion
del CPU en el ciclo critico, el comportamiento es altamente confiable y presenta un desfase
practicamente inexistente, lo que resulta esencial en procesos industriales o sistemas embebidos

donde el tiempo real es un requerimiento.

Desde una perspectiva funcional, el comparador del CCP esta integrado por:
e Un latch de 16 bits para almacenar el valor de referencia.
e Una logica de comparacion que analiza permanentemente el valor del temporizador.

e Un conjunto de multiplicadores 16gicos que determinan la accion a ejecutar en el pin de
salida.

e Una unidad de eventos especiales que puede interactuar con periféricos como el ADC o
modulos de reset de temporizadores.

1] Bit de bandera CCP1IF

F

Reinicio del CCIf"R1
temporizador T1

|

Lagica Comparador
de control .
™,

T i

S | TMR1H || TMR1L |
TRISC,2 ccPim2

CCP1M1
CCP1MO TMR1

I CCPR1H || ccPriL |
|

-

Pin
RC2/CCP1
]

El disefio esta optimizado para realizar la comparacion en una sola operacion logica interna, evitando
ciclos adicionales y minimizando la latencia. Esto significa que incluso en sistemas con carga elevada,
el tiempo de respuesta del comparador permanece estable y confiable, aun cuando se ejecuten rutinas
pesadas en paralelo. Cabe destacar que un error minimo en la configuracion del temporizador puede
producir desalineacion temporal, lo cual debe evitarse mediante calculos detallados de preescalers y

frecuencias.

1. Seleccion del Modo de Comparacion

El primer paso consiste en escribir los bits CCPxM3:CCPxMO en el registro CCPxCON. Algunas

modalidades tipicas incluyen:

1001: Forzar salida CCPx a nivel alto en coincidencia.

1000: Forzar salida CCPx a nivel bajo en coincidencia.

1010: Generar una interrupcion sin modificar el pin.

1011: Activar evento especial, util para resetear TMR1 o iniciar una conversion ADC.

Una seleccion adecuada depende de la naturaleza del proceso a controlar. Por ejemplo, si se requiere
generar un pulso preciso, se recomienda utilizar los modos que modifican el pin de salida

directamente.

2. Configuracion del Valor de Comparacion
El valor preestablecido del evento se carga en:
e CCPRxH (bits altos)
e CCPRxL (bits bajos)

La escritura debe realizarse preferentemente con el temporizador detenido para evitar que un valor
parcial produzca una coincidencia accidental durante la carga. Este detalle suele causar errores en

principiantes, generando activaciones no deseadas del comparador.
3. Programacion del Temporizador Asociado (TMR1)
El temporizador debe configurarse cuidadosamente:
e Fuente de reloj interna o externa.
e Preescaler (1:1, 1:2, 1:4, 1:8).
e Seleccion de sincronizacion en caso de usar reloj externo.
e Activacion del oscilador especial T1OSC (si se requiere alta estabilidad).

El valor inicial del temporizador puede ser configurado en cero o en cualquier nimero especifico si

se requiere un desplazamiento temporal inicial.
4. Configuracion del Pin CCPx

El pin fisico asociado debe programarse como salida digital usando TRISx.
La incorrecta configuracion de este pin es una de las causas mas comunes de mal funcionamiento, ya
que el hardware del CCP puede generar un evento correcto, pero si el pin estd configurado como

entrada, la salida no se reflejara externamente.

5. Habilitacion de Interrupciones (Opcional)

Si se necesita reaccionar inmediatamente al evento del comparador, se activan:
e Bit de interrupcion CCPXIE en PIE1.
e Bit de habilitacion global GIE.

e Bit de prioridad si el microcontrolador lo soporta.

La rutina de servicio debe ser lo mas breve posible para evitar retardo acumulado en sistemas de alta

frecuencia.

Limitaciones Operativas
Aunque el modulo es altamente confiable, presenta algunas limitaciones:

e Si el temporizador TMR1 se comparte con otros procesos, puede generar conflictos de

sincronizacion.

e Laresolucion esta limitada por el reloj del temporizador; valores muy pequefios pueden no

ser alcanzables.

e FEl hardware del pin CCP puede presentar incompatibilidades si comparte funciones con

modulos como USB u osciladores secundarios.
e Valores grandes de preescaler disminuyen la precision temporal fina.

En algunos casos es necesario recalcular dinamicamente el registro CCPRx dentro de la rutina de

interrupcion, especialmente si se desea generar sistemas periddicos con intervalos variables.

A continuacion, se presenta un ejemplo tipico donde el modo comparador es indispensable: generar

un pulso de 10 ms para accionar una valvula solenoide utilizada en un sistema de dosificacion.
Objetivo del Sistema

La valvula debe activarse durante 10 ms exactos cada vez que se recibe una sefial de inicio. La
precision es critica, ya que la cantidad de fluido dosificado depende directamente del tiempo de

apertura.
Configuracion Base
o Frecuencia del reloj: 4 MHz

e TMRI con preescaler 1:1

e Periodo de incremento: 1 us
e Tiempo deseado: 10 000 pus = 10 ms
Por lo tanto:
Valor de comparacion = 10 000 decimal = 0x2710
Procedimiento de Configuracion
1. Configurar TMR1 en modo temporizador con preescaler 1:1.
2. Cargar el registro CCPR1H = 0x27 y CCPRIL = 0x10.
3. Configurar CCP1 en modo “Compare — force high on match” (CCP1M = 1001).
4. Configurar el pin CCP1 como salida para controlar la valvula.
5. Activar interrupcion CCP1 para desactivar la valvula cuando ocurra el evento.
Secuencia de Operacion
1. El sistema detecta una sefal de inicio.
2. Se coloca el pin CCP1 en estado bajo (cerrado).
3. Seresetea TMRI1 a cero y se inicia su conteo.

4. Cuando TMRI1 = 10 000, el hardware del CCP pone automéaticamente el pin CCP1 en alto,

abriendo la valvula.

5. Dentro de la interrupcion CCP1, se vuelve a cargar un segundo valor de comparacion para

cerrar la valvula tras otro tiempo determinado, o bien se apaga manualmente la salida.

Este proceso garantiza que la duracion de apertura no depende del software ni de interrupciones
externas, eliminando errores cumulativos y asegurando una dosificacion exacta incluso con carga

elevada del sistema.

5.3 CONFIGURACION 'Y
PROGRAMACION COMO CAPTURA

El modulo CCP (Capture/Compare/PWM) es un periférico especial que permite trabajar con sefales
temporizadas. Fue disefiado para interactuar con eventos tanto internos como externos.

Cuando esta en modo Captura, su funcion principal es:
Registrar el valor exacto del temporizador TMR1 cuando ocurre un evento externo en el pin CCPx.
Esto permite medir el tiempo entre:

o Flancos ascendentes

e Flancos descendentes

e Pulsos

e Ondas periddicas

JOUE ES EL MODO CAPTURA (CAPTURE MODE)?

El modo captura permite registrar el valor actual del temporizador (TMR1) cuando se detecta un
evento en el pin CCP1 o CCP2.

Esto sirve para:

e Medir frecuencia de sefiales.

e Medir periodo.

e Determinar tiempos entre flancos.

e Medir ancho de un pulso.

e Implementar tacometros, cronometros o sensores de velocidad.
En resumen:

El modulo captura el contenido del TMR1 justo cuando ocurre un flanco externo — guarda el tiempo
exacto del evento.

La configuracion y programacion del modo de captura (CAPTURE MODE) implica inicializar un
modulo de microcontrolador (como el médulo CCP en microcontroladores PIC) para registrar el valor
de un temporizador en un momento especifico, generalmente en respuesta a un flanco (ascendente o

descendente) de una sefial externa. La programacion requiere configurar el pin correspondiente como

entrada, inicializar el temporizador asociado, seleccionar el tipo de flanco a capturar y configurar las

interrupciones si €s necesario.

MODO CAPTURA

El modo de Captura es una de las tres funciones posibles que puede desempeiiar cada modulo CCP
(Capture-Compare-PWM) del PIC. Normalmente hay 2 modulos CCP1 y CCP2 con pines asociados
RC2 y RC1 (notad la inversion en la asignacion de pines). Es posible dedicar cada médulo CCPx a
una funcion distinta. Uno podria estar en modo CAPTURA (usando TMR1) y el otro en modo PWM
(usando TMR?2). Incluso usando ambos en modo CAPTURA podriamos usar una base de tiempos

distinta en cada modulo.

El sistema interno (segiin Microchip) involucra:

1. Pin CCPx
Entrada por donde la sefial externa entra al modulo.

2. Divisor de eventos (Prescaler interno del CCP)
Puede capturar:

o Cada evento
o Cada 4 eventos
o Cada 16 eventos

3. Latch de captura (registro CCPRxXL/H)
Guarda el valor de 16 bits cuando ocurre €l evento.

4. Interfaz con TMR1
E1 CCP "lee" el valor instantaneo de TMR 1.

5. Bandera (CCPxIF)
Se activa automaticamente cuando hay una captura.

6. Interrupcion del CCP
Si esté habilitada, la CPU salta a la rutina ISR.

LA SIGUIENTE TABLA DEL DATASHEET MUESTRA LAS POSIBILIDADES DE COMBINACION:

CCP1 Mode CCP2 Mode

Interaction

Capture Capture | Each module can use TMR1 or TMR3 as the time base. The time base can be different
for each CCP

Capture Compare | CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3
(depending upon which time base is used). Automatic A/D conversions on trigger event
can also be done. Operation of CCP1 could be affected if it is using the same timer as a
time base

Compare Capture | CCP1 can be configured for the Special Event Trigger o reset TMR1 or TMR3
(depending upon which time base is used). Operation of CCP2 could be affected if it is
using the same limer as a lime base 7

Compare Compare | Either module can be configured for the Special Event Trigger to reset the time base.
Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if
both modules are using the same time base.

Capture PwMM | None

Compare PwM" | None

PwWmMt Capture | None

pwmit Compare | None

pwmi? PWM Both PWMs will have the same frequency and update rate (TMR2 interrupt).

Note 1: Includes standard and enhanced PWM operation.

Cada uno de los modulos CCP tiene asociados varios registros (cambiar la x en lo sucesivo por 1 o

2):

CCPxCON: con este registro definiremos el tipo de operacion (Capture / Compare / PWM) del

modulo. El valor para seleccionar modo de CAPTURA es:

0b 000001xx

Los dos ultimos bits configuran el tipo de evento a capturar:
- 00: capturar cada caida de la linea.

- 01: capturar cada subida de la linea.

- 10: capturar cada 4* subida de linea.

- 11: capturar cada 16° subida de linea.

CCPRxH,CCPRxL: dos registros de 8 bits. En el modo captura guardan el valor de un timer (TMRO

0 TMR3) corriendo en modo 16 bits en el momento de producirse el evento.

En el caso del modo captura, también tendremos que configurar ciertos bits especiales del registro
del timer TMR3 (T3CON) que seleccionan que timer se asocia al médulo de captura. Es posible
configurar ambos méodulos en modo captura y aun asi usar timers distintos (TMR1 o TMR3) en cada
uno de ellos (al contrario que lo que vimos en modo PWM, donde los dos médulos compartian el

mismo timer (TMR2).

e T3CON.T3CCP2 : bit 6 de T3CON
e T3CON.T3CCP1 : bit 3 de T3CON

Notad que ambos bits no estan consecutivos en T3CON. Valores posibles para estos bits:

1x --> TMR3 para ambos moédulos
01 --> TMR3 usado en CCP2, TMR1 usado en CCP1

00 --> TMR1 usado en ambos modulos.

Ademas de los registros anteriores el modo CAPTURE tiene definida una interrupcion, que salta (si
esta habilitada) cuando se produzca un evento. Esta interrupcion se usa a menudo porque lo que se
suele querer medir es la separacion entre dos eventos (periodo, ancho de un pulso, etc.). Si no hacemos
nada, al suceder el segundo evento, el PIC sobre-escribira el tiempo del primero. La interrupcion nos

permite guardar el primer tiempo antes de ser sobrescrito.

Si los eventos se suceden muy rapido (p.e. del orden de 1 usec) podria ser que la interrupcion no
llegue a tiempo de guardar el ler valor. En ese caso podemos programar un prescaler (modos 10 o 11
en CCPCON) para definir el evento como 1 de cada 4 o 1 de cada 16. De esta forma también

mejorariamos la calidad de la medida al promediar varios periodos.

INICIALIZACION MODULO CCP Y TIMER ASOCIADO

Veamos un ejemplo de los pasos a realizar para usar el modo CAPTURE. Por ejemplo, para usar

CCP1 con TMR3 como timer asociado, debemos:

1. Configurar el timer a usar (TMR3) en modo 16 bits, con el prescaler escogido, definiendo asi

la base de tiempos a usar.
2. Arrancar el timer (TMR3) a usar.

3. Poner los bits T3CCP2 y T3CCP1 de T3CON a 1 para seleccionar el uso de TMR3 como

timer asociado a ambos modulos CCP.
4. Declarar el pin correspondiente (en este caso RC2, asociado a CCP1) como entrada.

5. Habilitar el moédulo CCP1 en modo CAPTURE con la definicion de evento que se desee (1x
subida, 1x caida, x4, x16)

6. Si vamos a usar la interrupcion de CCP1, habilitarla y declararla de alta prioridad

(aconsejable pues no queremos "saltarnos" un evento).

VEAMOS EL CODIGO PARA LLEVAR A CABO LOS PASOS ANTERIORES.

El timer se pondra en marcha en modo 16 bits y se dejard en modo "free-running" sin interferencia
alguna (no tocaremos el contador del TMR3). En el proyecto estoy usando un cristal de 8 MHz por
lo que el ciclo de instruccion es de 2 microsegundo. Por comodidad usare un PRESCALER 1:2 en
el timer TMR3, de forma que cada incremento de su contador representara 1 microsegundo. Seria

facil configurar T3CON por nuestra cuenta, pero en este ejemplo usaremos las funciones de C18:

// Starts TMR3 using 0scC as source, 16bit mode,
// with 1:2 prescaler (1 usec @ 8
MHz) OpenTimer3(TIMER_INT_OFF&T3_16BIT_RW&T3_SOURCE_INT&T3 PS 1 2
&T3_SOURCE_CCP);

// TMR3 as source for both CCP1/CCP2
T3CONbits.T3CCP2=1; T3CONbits.T3CCP1=1;

Aqui creo que hay un bug en C18. Segtin la documentacion hay una mascara (T3_SOURCE_CCP)
que, si se afiadiese al argumento de OpenTimer3, pondria los valores adecuados en los bits T3CCP1
y T3CCP2 de forma que TMR3 fuese el timer a usar por ambos médulos. Sin embargo, cuando la uso
no se ponen los bits a su valor correcto (1). Es por esto por lo que necesito ponerlos a 1 "manualmente”

en la siguiente linea.

Para que el modulo CCP1 funcione correctamente y detecte los eventos es necesario que su pin

asociado (RC2) esté declarado como una entrada:

TRISCbits.TRISC2=1; // RC2 as input

Ahora vamos a configurar el modulo CCP1 en modo CAPTURA. Por ejemplo, si deseamos
configurar CCP1 en modo 4X (un evento es la llegada de 4° pulsos o mas especificamente, la llegada

de la 4° subida) basta hacer:

CCP1CON=0b00000110; // Modo CAPTURE. Event = x4 rising edges

Para hacer el programa mas legible podriamos usar la correspondiente rutina de C18 (en este caso

tendriamos que incluir fichero capture.h):

// CCP1CON=0b00000111 Modo CAPTURE. Event = x16 rising edges
OpenCapturel(CAPTURE_INT OFF,C1_EVERY 4 RISE_EDGE);

Finalmente habilitariamos la interrupcion del CCP (alta prioridad):

enable priority levels;

enable CCP1_int; set_CCP1l_high;

enable_high_ints; enable_low_ints;

Ese seria el codigo de inicializacion en el programa principal. Como hemos habilitado la interrupcion
CCP1 debemos escribir una ISR que maneje dicha interrupcion. Obviamente lo que hagamos en esa
interrupcion dependerd de la aplicacion en la que estemos pensando. Sin embargo, en muchas
ocasiones, lo que si querremos hacer es guardar el tiempo (registros CCPR1H:CCPR1L) del evento
que ha provocado la interrupcion y calcular la separacion con el evento anterior. Veamos como

escribir una sencilla ISR para conseguir esos objetivos:

uintle t0=0;
uintle dt=e;

// High priority interruption
#pragma interrupt high_ ISR
void high ISR (void)
{
uintle t;
if (CCP1_flag)
{
t=CCPR1H; t<<=8; t+=CCPR1L; // Read CCPR1 (time of event
that just happened)
dt = (t-t0); // Interval between events
t0 = t; // Keep latest time in te
CCP1_flag=0;
}
}

// Code @ 0x0008 -> Jump to ISR for high priority ints
#pragma code high vector = 0x0008

void high_interrupt (void){_asm goto high ISR _endasm}
#pragma code

El codigo es muy sencillo. Hay dos variables externas t0 y dt de tipo uint16. La ISR lee el momento
del ultimo evento (de CCPR1H:CCPRI1L) y lo salva en t. Calcula el intervalo con el ultimo evento
(t-t0) y lo guarda en dt. Después actualiza t0 (ultimo evento) con el valor de t.

De esta forma en t0 guarda el momento del ultimo evento y en dt tenemos siempre disponible el valor

mas reciente de la separacion de eventos.

La limitacion de este enfoque es que si la separacion entre eventos supera los 65536 "clocks" del

timer TMR3 va a haber un rollover y a la resta (t-t0) le faltara anadirle 65536, 65336x2, etc.

Una solucidn seria habilitar la interrupcion del TMR3 y llevar la cuenta del nimero de rebosamientos

que tienen lugar entre un evento y el siguiente. En ese caso el intervalo entre eventos seria:
rebosamientos x 65536 + dt

En este caso no lo hemos implementado, por lo que la separacion entre eventos no deberia exceder

los 65536 microsegundos.

EJEMPLO COMPLETO EN C (PARA PICI6F877A)

#include <xc.h>

#define _XTAL_FREQ 4000000

volatile unsigned int capl =

9;
9;

volatile unsigned int cap2 =

volatile unsigned char flag = 0;

void __ interrupt() ISR(void){

if(PIR1bits.CCP1IF){
if(flag == 0){
capl ((unsigned int)CCPR1H << 8) | CCPR1L;
flag = 1;
} else {
cap2 = ((unsigned int)CCPR1H << 8) | CCPRI1L;
flag = 2;

}
PIR1bits.CCP1IF = O;

void main(void){

TRISCbits.TRISC2 = 1; // CCP1 como entrada

T1CON = 0x01; // TMR1 ON, prescaler 1:1

CCP1CON = 0bo00OO100; // captura por flanco ascendente

PIR1bits.CCP1IF
PIElbits.CCP1IE

INTCONbits.PEIE
INTCONbits.GIE =

while(1){
if(flag == 2){

unsigned int periodo = cap2 - capl;

flag = 0;

El modulo CCP en modo Captura es fundamental para medir tiempos y frecuencias con alta
precision en microcontroladores PIC. Mediante hardware especializado, permite detectar eventos

externos y registrar el tiempo exacto del suceso mediante el temporizador TMR1.

Al dominar este modulo, se pueden desarrollar sistemas avanzados como medidores de RPM,
periodometros, cronometros, sensores industriales, lectura de pulsos, e incluso sistemas de

sincronizacion en tiempo real.

5.4 CONFIGURACION Y
PROGRAMACION COMO PWM

Los motores de corriente directa poseen una inductancia significativa en sus devanados, la
cual juega un papel critico cuando el motor es alimentado mediante sefiales de Modulacién
por Ancho de Pulso (PWM). Desde el punto de vista eléctrico, el motor puede modelarse
como una combinacion serie de resistencia R, inductancia Ly una fuente dependiente de
voltaje correspondiente a la fuerza contraelectromotriz (Epep). Cuando se aplica un PWM,
el voltaje promedio aplicado al motor depende del ciclo de trabajo, pero la respuesta real de

corriente depende fuertemente de la frecuencia con que se conmuta la sefial.

CCP1MO
CCP1M1

Pin
RC2/P1A

Pin
RD5/P1B

J_
"

o
=
c 4

BB

Y

Pin

y

a - RD6/P1C
L]

Pin
RD7/P1D

N

PUERTO | PWM ENTRADA [SALIDA

Diagrama de bloques de la logica de salida y direccionamiento (Steering) del modulo ECCP en

microcontroladores PIC.

1. Modelo Eléctrico Inductivo del Motor

Un motor DC pequetio suele modelarse como:

. di(t)
Vowm () = i(H)R + LT + Epems

Cuando el transistor de potencia estd en ON, el voltaje aplicado al devanado es

aproximadamente Vsupply-

Cuando esta en OFF, el devanado queda recirculando corriente mediante el diodo de rueda

libre.

La solucion diferencial para la corriente durante el estado ON es:

R V —F R
i(t) — Ioe_ft + supplyR bemf (1 e)
Y durante el estado OFF:
_R,
l(t) = IoNe L

Estas expresiones explican por qué el devanado se opone a cambios rapidos: cuanto mayor
sea la frecuencia PWM, menor es el tiempo disponible para que la corriente crezca y decaiga,

lo que reduce la ondulacion (ripple).

2. Frecuencia PWM y Ripple de Corriente
La ondulacién de corriente es aproximada por:

V —E
Ai = supplyL bemf .D. TPWM

donde:

e D= ciclo de trabajo
e Tpwu = 1/Fpyu=periodo de la sefial PWM

e L= inductancia del motor

Conclusion directa:

Ai
PWM

= A mayor frecuencia PWM — menor ondulacion — par mas estable.

Cuando la frecuencia PWM se mantiene por debajo de ~1 kHz, el ripple es tan grande que
genera vibraciones mecanicas visibles y ruido audible.
A frecuencias por arriba de 15-20 kHz, el motor opera casi como si recibiera un voltaje DC

constante.

3. Efecto de la Frecuencia PWM en el Par del Motor

El par generado por un motor DC es proporcional a la corriente instantanea:

() = K, - i(t)

Debido a esto:

« PWM de baja frecuencia produce un par fluctuante:
T;nst (E) varia significativamente.

« PWM de alta frecuencia produce par casi constante:

Tinst(t) & Tavg

Cuando el ripple disminuye, también disminuyen los picos de torque que generan vibracion

mecanica y ruido.

4. Efecto de la Frecuencia PWM en la Eficiencia y el Calentamiento

La transicion ON—OFF produce pérdidas de conmutacion en el transistor que controla el

motor.

Las pérdidas de conmutacion dependen de:

1
Psw &= EVI(trise + tfall)FPWM

Por lo tanto:

e Sila frecuencia PWM es muy alta, aumentan las pérdidas.

e Sila frecuencia es muy baja, aumenta el ripple y el motor vibra.
Por esto, en control de velocidad tipico se eligen:

Es el rango ideal entre ruido, par estable y eficiencia.

5. Relacion entre Frecuencia PWM y Resolucion del PWM

El médulo CCP del PIC cuenta con 10 bits de resolucion, pero esta resolucion se reduce si

la frecuencia PWM se hace demasiado alta.

Recordemos que:

F _ Fosc
PWM ™ 4(PR2 + 1) - Prescaler

y la resolucion en pasos reales disponibles es:

N = 4(PR2 + 1)

y en bits:

Resoluciony;s = log ,(N)

Si elevas la frecuencia PWM, debes bajar

Si bajas PR2, se reduce la resolucion.

Ejemplo:

Si se usa una frecuencia PWM muy alta que obliga a un PR2 = 49:

N = 4(49 + 1) = 200 = log ,(200) = 7.64 bits

Se esté perdiendo resolucion — control mas brusco.

PR2.

6. Codigo de Ejemplo con Formulas Aplicadas (XC8)
Configuracion para 20 kHz, usando la ecuacion:

Fosc
PR2 = -1
4 - Fpyy - Prescaler

Con Fygc = 20 MHz, Prescaler = 1:4:

20,000,000

=2.20000.4 L=

PR2

#define XTAL_FREQ 20000000 // 20 MHz
PWM_Init(duty){
TRISCbits.TRISC2 = 1; // Entrada temporal (evita glitches)
PR2 = 249; // fPWM = 20 kHz

CCPR1L = duty >> 2;
CCP1CONbits.DC1B = duty & 0x03;

T2CONbits.T2CKPS = @b@l; // Prescaler 1:4
T2CONbits.TMR20ON iLg

CCP1CONbits.CCP1IM = @b1160; // Modo PWM

__delay ms(1);
TRISCbits.TRISC2 ; // Ahora si salida

PWM_SetDuty(duty){
CCPR1L = duty >> 2;
CCP1CONbits.DC1B = duty & 0x03;

main(){

PWM_Init(512); // 50%

while(1){
// Ejemplo: rampa de control suave
for(i=0; 1<1023; i++){

PWM_SetDuty (i);
__delay ms(2);

5.5 DESARROLLO DE APLICACIONES.

El médulo CCP (Capture/Compare/PWM) es un periférico presente en muchas familias de
PIC que combina tres funcionalidades: captura (medir el tiempo de eventos), comparacion
(activar eventos cuando el contador coincide con un valor) y generacion PWM (control de
ciclo de trabajo). Es esencial para aplicaciones de control de motores, generacion de sefiales

para servos, lectura de sensores por tiempo de pulso, y sincronizacion de eventos.

El CCP es un bloque hardware integrado que usa temporizadores del microcontrolador
(TMR1, TMR2, etc.) para ofrecer medicion y control a alta resolucion sin carga intensa del
CPU. En PICs clésicos (ej. PIC16F877A) suele haber CCP1 y CCP2, cada uno con registros
de 16 bits (CCPRxH:CCPRxL) y un registro de control CCPxCON. Microchip+1

Capture (Captura)

e Mide el valor del/los temporizador(es) cuando detecta un flanco (subida/bajada) en

la entrada CCPx.

o Util para medir periodos, ancho de pulso, frecuencia, tiempo entre eventos (por

ejemplo, medicidon con sensor ultrasonico, encoder).
e Normalmente usa TMR1 (16-bit) para obtener alta resolucion.
Compare (Comparador)

e Compara el contenido del registro de comparacion (CCPRx) con un temporizador (ej.
TMR1). Cuando hay coincidencia, puede: cambiar el pin CCPx, generar interrupcion,

reiniciar TMRX o generar un “special event trigger”.

e Se usa para generar eventos temporales precisos o para sincronizar acciones.

https://ww1.microchip.com/downloads/en/devicedoc/39582b.pdf?utm_source=chatgpt.com

PWM (Pulse Width Modulation)

e Genera una senal PWM en el pin CCPx, donde la frecuencia se define por PR2 y

TMRZ2, y el ciclo de trabajo por CCPRI1L + bits LSB en CCP1CON.

e Muy usado en control de velocidad de motores DC, control de brillo LED y control

de servomotores (posicionamiento).

CONTROL DE VELOCIDAD DE MOTORES DC Y MOTORES
BRUSHLESS (BLDC)

El CCP permite generar seiiales PWM con variacion del ciclo de trabajo (duty cycle), lo cual

permite:
e Ajustar la velocidad del motor.
e Controlar el par.
o Implementar estrategias como arranque suave (soft-start).
e Reducir consumo energético.

FUNCIOMAMIENTO
o EI CCP configura un temporizador (generalmente Timer2).
e EI PWM genera pulsos con frecuencia fija.

o El microcontrolador ajusta el duty cycle segin la retroalimentacion recibida (sensor

Hall, encoder, potenciémetro, etc.).

EJEMPLO

CONTROL DE CINTA TRANSPORTADORA EN PROCESOS DE MANUFACTURA

El PIC mide el error de velocidad y ajusta el PWM para mantener constante la velocidad del

motor sin importar la carga.

SERVOCONTROL Y ROBOTICA

Los servomotores requieren pulsos periddicos entre 1 ms y 2 ms, repetidos cada 20 ms.
COMO SE USA EL CCP

o Se configura en modo PWM o Compare.

e Se ajustan los pulsos para generar la posicion del servo.

o El CCP garantiza estabilidad temporal, necesaria para movimiento preciso.
EJEMPLO

BRAZO ROBOTICO EDUCACIONAL O INDUSTRIAL

El PIC usa varios modulos CCP para controlar simultdneamente diferentes servos (hombro,

codo, muiieca).

MEDICION DE VELOCIDAD MEDIANTE SENSORES DE EFECTO HALL O
ENCODERS

MODO CAPTURE
Permite medir fendmenos basados en tiempos extremadamente cortos.
FUNCIONAMIENTO TECNICO
o El CCP detecta flancos ascendentes/descendentes.
o Captura el valor del temporizador asociado.
e (alcula la frecuencia o periodo entre pulsos.
EJEMPLO

ODOMETRO DIGITAL PARA ROBOT MOVIL

El CCP mide los pulsos del encoder y calcula distancia y velocidad del robot.

SISTEMA DE ULTRASONIDO (MEDICION DE DISTANCIA)
Usado en robots minisumo, robots méviles y domotica.
COMO USA CCP
e Modo Compare para generar el “trigger” de 10 ps.
e Modo Capture para medir el tiempo de eco.

e Convertir tiempo — distancia usando la velocidad del sonido.

EJEMPLO

El CCP permite capturar tiempos del eco con precision de microsegundos, imprescindible

para una lectura confiable.

SINCRONIZACION EN INVERSORES, CONTROL DE POTENCIA Y DRIVERS
MOSFET

Aplicacion avanzada en electronica de potencia.
MODO UTILIZADO: PWM
o EI CCP genera senales PWM complementarias.
e Controla compuertas de MOSFET o IGBT.

o Se aplica dead-time (tiempo muerto).

EJEMPLO

CONTROLADOR DE CARGA PARA PANEL SOLAR (BUCK/BOOST)

El CCP regula la energia entregada a la bateria variando el duty cycle.

CONTROL DE TEMPERATURA MEDIANTE CONTROL PID
Aungque el PID se ejecuta por software, el CCP es fundamental para:
e Accionar resistencias calefactoras por PWM.
o Regular ventiladores.
o Dosificar potencia.
EJEMPLO

INCUBADORA DE LABORATORIO O CAMARA TERMICA INDUSTRIAL

El CCP ajusta el PWM para mantener constante la temperatura seglin el sensor (termistor,

PT100, etc.)

DIMMERS PARA ILUMINACION LED Y AHORRO DE ENERGIA

El CCP genera PWM para controlar la luminosidad.

VENTAJAS TECNICAS
e Ausencia de parpadeo.
o Eficiencia energética.
e Control fino del brillo.

EJEMPLO

Permite regular el nivel de luz de un cuarto mediante sensores o control remoto.

CONTROL DE VALVULAS PROPORCIONALES Y ACTUADORES INDUSTRIALES
Las vélvulas proporcionales funcionan con sefiales PWM o sefiales equivalentes a analogicas.
MODO USADO: PWM

o Ajusta el flujo del fluido.
e Controla presion o caudal.

e Requiere precision en frecuencia y duty cycle — CCP.

EJEMPLO

El CCP regula la entrada de aire para controlar fuerza o posicion de pistones.

COMUNICACION POR MODULACION (FSK, ASK, IR, PWM SERIAL)

Algunos protocolos de comunicacion simple usan modulacidon por variacion de ancho de

pulso.
MODO DEL CCP
e PWM genera la portadora.
o Compare regula tiempos de encendido/apagado.
o Capture mide tiempos en el receptor.
EJEMPLO

CONTROL REMOTO INFRARROJO COMPATIBLE CON NEC O RCS

El CCP permite medir la duracion de los pulsos para decodificar la trama recibida.

MEDICION DE FRECUENCIA Y PERIODO DE SENALES EXTERNAS
Aplicacion esencial para instrumentacion electronica.
MODO CAPTURE

e Detecta flancos a intervalos precisos.

e Mide periodo — calcula frecuencia.

EJEMPLO

El CCP captura el tiempo entre pulsos para calcular la velocidad de un eje rotativo.

GENERACION DE SENALES DE RELOJ O TRENES DE PULSOS

Se utiliza para sincronizar:

e Modulos externos.

» Etapas digitales.

e Muestras de ADC.
MODO COMPARE

e Genera interrupciones periodicas.

e Crea pulsos a frecuencias definidas por el usuario.

EJEMPLO

El CCP puede generar un pulso constante para sincronizar un médulo UART externo.

APLICACIONES BIOMEDICAS (OXIMETROS, SENSORES DE FLUJO, MOTORES
PERISTALTICOS)

Los equipos biomédicos utilizan el CCP de multiples maneras:
PWM PARA MOTORES PERISTALTICOS

Controlan el flujo de sangre o medicamentos.

CAPTURE PARA MEDIR SENALES PWM DE SENSORES
Por ejemplo, en oximetros que modulan su salida.

EJEMPLO

El CCP regula la velocidad del motor para dosificar liquido con alta precision.

-
1
5

o

-
i

L,
w;
=

CONTROL DE AUDIO Y GENERACION DE TONOS
Los PIC pueden generar tonos mediante PWM filtrado.
APLICACION
e Timbres digitales.

e Alarmas sonoras.

e Musica en proyectos educativos.

IMPRESION 3D Y CNC (DRIVERS DE MOTORES PASO A PASO)
El CCP no controla directamente el motor paso a paso, pero si:
e Genera pulsos STEP en modo Compare.
e Regula la aceleracion con PWM.

o Controla ventiladores, cama caliente y extrusor por PWM.

EJEMPLO

El CCP genera PWM para calentar y mantiene una temperatura estable.

SISTEMAS AUTOMOTRICES

Muchos mddulos de autos funcionan mediante senales que el CCP puede captar o generar.

EJEMPLOS

Medicion del sensor de cigliefial (modo Capture).
Control de inyectores (modo Compare).
Control de ventiladores (modo PWM).

Modulacion de luces LED.

CONCLUSION

El analisis integral del médulo CCP permite concluir que este periférico es la piedra angular
para el control de tiempo real en la familia de microcontroladores PIC. A través del estudio
de los temas 5.1 al 5.5, se ha demostrado que la versatilidad del modulo radica en su
arquitectura de "hardware compartido”, donde un mismo conjunto de registros fisicos
(CCPRxL, CCPRxH) cambia su funcion drasticamente segun la configuracion de los bits de

control.

Se ha evidenciado que el éxito en la programaciéon del modulo depende estricta y
directamente del dominio de los temporizadores: el Timer]l (o Timer3) es indispensable para
la precision en los modos de Captura y Comparacioén , mientras que el Timer2 dicta la
frecuencia operativa en el modo PWM. Mas all4 de la teoria de registros, la investigacion
valida que la implementacion de estos modos (5.2, 5.3, 5.4) habilita el desarrollo de
aplicaciones robustas (5.5), tales como la lectura de sensores infrarrojos, la generacion de
sefiales analdgicas via DAC-PWM o el control de velocidad en motores DC. En definitiva,
el modulo CCP transforma al microcontrolador de un simple procesador logico a un
controlador dindmico capaz de interactuar con el mundo analdgico y temporal con alta

precision y baja latencia de software.

BIBLIOGRAFIA

[1] Microchip Technology Inc., “Using the CCP Module(s) — AN594”, Application Note,
24-Jun-2015. [Online]. Available:
https://ww1.microchip.com/downloads/aemDocuments/documents/MCUOQ8/ApplicationNot
es/ApplicationNotes/00594B.pdf

[2] Microchip Technology Inc., “PIC16F87/88 Data Sheet”, DS30487C, Microchip, 2004.
[Online]. Available: https://ww1.microchip.com/downloads/en/devicedoc/30487c.pdf

[3] Microchip Technology Inc., “Using the CCP Module — TB3275”, Technical Brief
DS90003275A, 2020. [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/Using-the-CCP-Module-
90003275A.pdf

[4] Aswinth Raj, “Generating PWM using PIC Microcontroller with MPLAB and XCS8,”
CircuitDigest, 15-Mar-2017. [Online]. Available: https://circuitdigest.com/microcontroller-
projects/pic-microcontroller-pic16{877a-pwm-tutorial

[5] “Generating PWM using PIC Microcontroller —- MPLAB XC8,” Electrosome Tutorials,
21-May-2015. [Online]. Awvailable: https://electrosome.com/pwm-pic-microcontroller-

mplab-xc8
[6] “Generating PWM using PIC Microcontroller with MPLAB XC8,” PIC-

Microcontroller.com. [Online]. Available: https://pic-microcontroller.com/generating-pwm-
using-pic-microcontroller-mplab-xc8

[7] “PWM using PIC Microcontroller (PIC16F877A) — Example in MPLAB XC8,”
MicrocontrollersLab.com. [Online]. Available: https://microcontrollerslab.com/pwm-using-
picl6f877a-microcontroller

[8] Microchip Technology Inc., PICI8F4550/2550/2455/2450 Data Sheet: Enhanced Flash USB
Microcontrollers., 2012. [En lineal. Disponible:
https://ww1.microchip.com/downloads/en/DeviceDoc/39632¢e.pdf

Accedido: 27 de noviembre de 2025.

[9] J. Peatman, Embedded Design with the PIC Microcontroller. Upper Saddle River, NJ, USA:
Prentice Hall, 1998.

[10] “Modo de captura en el moédulo CCP” PicFeralia, 2013. [En linea]. Disponible:
https://picfernalia.blogspot.com/2013/07/modo-de-captura-en-el-modulo-ccp.html
Accedido: 27 de noviembre de 2025.

https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ApplicationNotes/ApplicationNotes/00594B.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ApplicationNotes/ApplicationNotes/00594B.pdf
https://ww1.microchip.com/downloads/en/devicedoc/30487c.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Using-the-CCP-Module-90003275A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Using-the-CCP-Module-90003275A.pdf
https://circuitdigest.com/microcontroller-projects/pic-microcontroller-pic16f877a-pwm-tutorial
https://circuitdigest.com/microcontroller-projects/pic-microcontroller-pic16f877a-pwm-tutorial
https://electrosome.com/pwm-pic-microcontroller-mplab-xc8
https://electrosome.com/pwm-pic-microcontroller-mplab-xc8
https://pic-microcontroller.com/generating-pwm-using-pic-microcontroller-mplab-xc8
https://pic-microcontroller.com/generating-pwm-using-pic-microcontroller-mplab-xc8
https://microcontrollerslab.com/pwm-using-pic16f877a-microcontroller
https://microcontrollerslab.com/pwm-using-pic16f877a-microcontroller
https://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf
https://picfernalia.blogspot.com/2013/07/modo-de-captura-en-el-modulo-ccp.html

[11] Microchip Technology Inc., "Mid-Range MCU Family Reference Manual - Section 16.
Capture/Compare/PWM Modules," Chandler, AZ, USA, Documento DS33023A, 1997. [En linea].
Disponible: https://ww1.microchip.com/downloads/en/DeviceDoc/33023a.pdf. [Accedido: 30-nov-
2025].

[12] Microchip Technology Inc., "PIC16F877A Data Sheet - 28/40-Pin 8-Bit CMOS FLASH
Microcontrollers," Chandler, AZ, USA, Documento DS39582B, 2013. [En linea]. Disponible:
https://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf. [Accedido: 30-nov-2025].

[13] N. Miti¢, PIC Microcontrollers - Programming in C, 1a ed. Belgrado, Serbia: MikroElektronika,
2009, cap. 5, "CCP Modules". [En linea]. Disponible: https://www.mikroe.com/ebooks/pic-
microcontrollers-programming-in-c/ccp-modules. [Accedido: 30-nov-2025].

[14] DeepBlueEmbedded, "PIC Microcontroller PWM — Capture Compare PWM (CCP) Module,"
DeepBlueEmbedded, 2018. [En linea]. Disponible: https://deepbluembedded.com/pic-pwm-ccp-
module-tutorial-pic-microcontroller/. [Accedido: 30-nov-2025].

[15] M. A. Redondo, "Disefio y analisis de un PWM adaptado para propositos educativos," Revista
Hashtag, wvol. 1, no. 8 pp. 64-75 2017. [En linea]. Disponible en:
https://revistas.cun.edu.co/index.php/hashtag/article/download/508/365/1138. [Fecha de consulta:
Nov. 30, 2025].

[16] Microchip Technology Inc., "AN957: Generacion de Sefiales PWM de Alta Resolucion,"
Microchip Application Note, 2004. [En lineal. Disponible en:
https://ebusiness.avma.org/files/ProductDownloads/mcm-client-brochures-microchips-spanish-
2022.pdf. [Fecha de consulta: Nov. 30, 2025].

[17] G. Broca Cruz, "Implementacion de control de motores DC mediante el médulo ECCP en
microcontroladores PIC16," Repositorio Institucional Tecnolégico Nacional de México, 2021. [En
linea]. Disponible en: https://www.rebiun.org/directorio-repositorios. [Fecha de consulta: Nov. 30,
2025].

[18] J. R. Angulo, "Configuracion del modulo CCP en modo PWM para control de servomotores,"
Programacion Electronica Hoy, 2019. [En linea]. Disponible en: https://tecnico.com/. [Fecha de
consulta: Nov. 30, 2025].

https://ww1.microchip.com/downloads/en/DeviceDoc/33023a.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf
https://www.mikroe.com/ebooks/pic-microcontrollers-programming-in-c/ccp-modules
https://www.mikroe.com/ebooks/pic-microcontrollers-programming-in-c/ccp-modules
https://www.google.com/search?q=https://deepbluembedded.com/pic-pwm-ccp-module-tutorial-pic-microcontroller/
https://www.google.com/search?q=https://deepbluembedded.com/pic-pwm-ccp-module-tutorial-pic-microcontroller/
https://revistas.cun.edu.co/index.php/hashtag/article/download/508/365/1138
https://ebusiness.avma.org/files/ProductDownloads/mcm-client-brochures-microchips-spanish-2022.pdf
https://ebusiness.avma.org/files/ProductDownloads/mcm-client-brochures-microchips-spanish-2022.pdf
https://www.rebiun.org/directorio-repositorios
https://tecnico.com/

INSTITUTO TECNOLOGICO SUPERIOR
DE SAN ANDRES TUXTLA (L.T.S.S.A.T.)

DIVISION INGENIERIA MECATRONICA
IMCT-2010-229
MICROCONTROLADORES

DOCENTE

Dr. José Angel Nieves Vazquez
711-A
PERIODO AGOSTO-DICIEMBRE 2025

UNIDAD V
PROYECTO FINAL

PRACTICA

SISTEMA EMBEBIDO BASADO EN ESP32 PARA
MONITOREO Y CONTROL AUTOMATICO DE
TEMPERATURA UTILIZANDO SENSOR MAX6675 (TIPO
K), COMUNICACION BLUETOOTH Y CONTROL DE
ACTUADOR.

PRESENTAN
Juan José Jiménez Reyes 22100541
Juan José Marcial Fiscal 22100547

Polito Ceron Miguel de Jesus 22100552

Quino Caixba Perla Joselin 22100555
Teoba Herrera Rocio 22100562

SAN ANDRES TUXTLA, VER. A 01 DE DICIEMBRE DE 2025

INSTITUTO TECNOLOGICO SUPERIOR DE
SAN ANDRES TUXTLA

INTRODUGCCIONoeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e e e eeeeseneeneeeeeeeeeneeenns 3

OBUJETIVO ..ottt saneas 4
MATERIALES Y HERRAMIENTAScocoooooeeeeeeeeeeeeeeeeerereeeveveveseeeseannns 5
DATOS DE LOS COMPONENTES PRINCIPALES.............................oo...... 10

ESP32........ooooeeeeeeeeeeeeeeeeeeee ettt 10

SENSOR MAX6675 + TERMOPAR TIPO Keeeeeeeeeeeeeeeereeenenns 11
DESCRIPCION FUNCIONAL DEL CIRCUITOueeeeeeeeeeeen.. 12
DESCRIPCION DEL PROCEDIMIENTO........................oooeeeeeeeeeeevrrrreerernss 13
CODIGO UTILIZADO (SPLR)...................oooooeeeeeeeeeeeeeeeeeeeeeeeeererssseseesesesenanns 14
EXPLICACION DEL CODIGO...........................eeeeererrerererererirrrrrraenens 17
ENSAMBLADO DEL SISTEMAooooooeeeeeeeeeeeeeereeeeeeeererersssssiesesennns 23
RESULTADO DEL ENSAMBLAJE..........................eeeeeeeeerrreeeeeveraesennnnns 26
VIDEO FUNCIONANDO.......................oooooeoeoeeeeeeeeeeeeeeeeeeeereerereeeeseseesesesesenenne 30

CONCLUSION.....................ocooeueeeeevriseeeeeeerrrereeseseisissssssssstssssesesesesessssssssssssseens 31

INTRODUCCION

En la industria moderna, el monitoreo y control de la temperatura es un factor critico en
numerosos procesos como la manufactura, la industria alimentaria, sistemas de calefaccion,
refrigeracion y control ambiental. Un pequerio error en la medicion térmica puede ocasionar

darnios en equipos, pérdida de materiales o incluso accidentes.

Con el avance de la electronica embebida, es posible desarrollar sistemas de monitoreo mas
eficientes utilizando microcontroladores de alto rendimiento como el ESP32, el cual integra
conectividad inalambrica, gran capacidad de procesamiento y multiples protocolos de

comunicacion.

En esta prdctica se desarrollo un sistema de monitoreo y control de temperatura utilizando
un sensor MAX6675 con termopar tipo K, el cual permite medir temperaturas elevadas con
buena precision mediante el protocolo SPI. Los datos obtenidos son enviados por Bluetooth,
permitiendo su visualizacion remota, y ademas se implementa el control de un actuador en

funcion de la temperatura registrada.

Este sistema simula aplicaciones reales en entornos industriales automatizados, donde la

supervision de variables fisicas y el control en tiempo real son indispensables.

OBJETIVO

Disefiar ¢ implementar un sistema de monitoreo y control de temperatura utilizando un

ESP32, un sensor MAX6675 (SPI) y comunicacion Bluetooth, capaz de:
e Medir la temperatura mediante un termopar tipo K.
e Enviar la temperatura en tiempo real por Bluetooth.
e Generar alarmas cuando la temperatura sea mayor a 50°C o menor a 10°C.
e Controlar un actuador conectado al pin GPIO 2 en modo:
o Manual
o Automatico
o Desactivado

e Simular un sistema de control térmico industrial.

MATERIALES Y HERRAMIENTAS

Materiales
e 1 ESP32

1 Modulo sensor MAX6675

e 1 Termopar tipo K

e 1 Relé/LED/ Valvula/ Solenoide (Actuador)
e 1 Protoboard

e Cables Dupont macho-macho y macho-hembra
o Fuente de alimentacion 5V/USB

e PC con cable USB

el

\
h \
%
_

T AR

NN i, . .

s Il
\ _N / _‘a\\

OB B B AN

2By P
MMWC”‘M“[WS”’G msmcmm
SSS88852-

— =
=T umm
¢ -

.

2 v aererer, ¥

o

:c'scooo
S 294

DATOS DE LOS COMPONENTES

PRINCIPALES
ESP32
CARACTERISTICA VALOR
Voltaje de operacion|3.3 V
Microcontrolador Xtensa LX6 dual-core
Frecuencia Hasta 240 MHz
Comunicacion WiFi y Bluetooth integrados
GPIO +30 pines configurables
Protocolo SPI Si
UART Si
ADC/DAC Si

FIGURA 1ESP32

SENSOR MAX6675 + TERMOPAR TIPO K

PIN FUNCION ESP32

VCC | Alimentacion 3.3V

GND Tierra GND

SO Data output GPIO 19

CcS Chip Select GPIO 5

SCK | Clock GPIO 18
PINOUT

Termopar K Con Modulo

Max6675

T SALIDA DATA
" -een iR
<
..

—0

VOLTAJE DE ALIMENTACION
3.3A5.5V

FIGURA 2 TERMOPAR K CON MODULO MAX6675

DESCRIPCION FUNCIONAL DEL
CIRCUITO

El sistema se compone de tres bloques principales:
BLOQUE DE ADQUISICI ON DE TEMPERATURA
o El termopar tipo K mide la temperatura.
o EIMAX6675 convierte la sefal del termopar a un dato digital.

o El ESP32 lee ese dato mediante el protocolo SPI.

BLOQUE DE COMUNICACION

o EI ESP32 transmite los datos de temperatura via Bluetooth.

o Se envian cadenas como:

T25.50
o Cuando hay alarma:
AVI100
LR255G0B0O
GROGI50B255

BLOQUE DE CONTROL
o Un actuador est4 conectado al GPIO 2.
o Puede activarse:
*= Manualmente (M)
* Automaticamente (>40°C)

= Desactivado (N)

DESCRIPCION DEL PROCEDIMIENTO

Se conecto el modulo MAX6675 al ESP32 mediante SPI:
o SO — GPIO19
o CS — GPIOS
o SCK — GPIO18
o VCC—33V
o GND — GND
Se conecto el actuador (relé / LED) al GPIO 2.
En el Arduino IDE:
o Se configur6 el ESP32.
o Se cargo6 el codigo.
o Se abri6 el monitor serial.
Se emparejo un teléfono con el dispositivo Bluetooth:
o Nombre: MONITOREO DE TEMPERATURA
Se visualizaron las lecturas de temperatura y se probaron comandos:
o M — Modo manual
o A — Modo automatico
o N — Desactivar

Se probaron temperaturas altas y bajas para verificar las alarmas.

CODIGO UTILIZADO (SPI.h)

##include <BluetoothSerial.h>
#tinclude <SPI.h>

// Pines para MAX6675 (SPI)

const int SO_PIN = 19; // MISO

const int CS_PIN = 5; // Chip Select
const int SCK_PIN = 18; // SCK

// Pin para el actuador
const int ACTUADOR_PIN = 2;

// Objeto Bluetooth
BluetoothSerial SerialBT;

// Variables de control

float temperatura = 0.0;

unsigned long lastReadTime = 0;
unsigned long lastAlarmaSend = 0;
unsigned long lastFrioSend = 9;

// Variables para el actuador

char modoActuador = 'N'; // 'N'=Ninguno, 'M'=Manual,
"A'=Automatico

bool estadoActuador = false;

const unsigned long readInterval = 1000; // Lectura cada 1
segundo

const unsigned long alarmaInterval = 500; // Envio alarma cada
500ms

const unsigned long frioInterval = 500; // Envio frio cada
500ms

void 0O 1
Serial.begin(115200);

// Configurar pines del MAX6675 (SPI)
pinMode(CS_PIN, OUTPUT);
pinMode (SO _PIN, INPUT);

pinMode (SCK_PIN, OUTPUT);
digitalWrite(CS_PIN, HIGH);
digitalWrite(SCK_PIN, LOW);

// Configurar pin del actuador
pinMode (ACTUADOR_PIN, OUTPUT);
digitalWrite(ACTUADOR_PIN, LOW);

// Inicializar Bluetooth
if (!SerialBT.begin("MONITOREO DE TEMPERATURA™)) {
Serial.println("Error al inicializar Bluetooth™);
} else {
Serial.println("Bluetooth inicializado: MONITOREO DE
TEMPERATURA") ;

}

Serial.println("Sistema de temperatura listo (SPI)");
Serial.println("Comandos: M=Manual, A=Automatico, N=Ninguno");

}

void O |
unsigned long currentTime = millis();

// Leer temperatura cada intervalo

if (currentTime - lastReadTime >= readInterval) {
temperatura = leerTemperaturaSPI();
lastReadTime = currentTime;

if (temperatura == -999.0) {
Serial.println("Error leyendo sensor™);

} else {
Serial.print("Temperatura: ");
Serial.print(temperatura);
Serial.println(" °C");
enviarTemperaturaBasica();

}

}

// Controlar alarmas y actuador
controlarAlarmas(currentTime);
controlarActuador();
verificarComandosBluetooth();

}

float O {
uintl6_t valor =

digitalWrite(CS_PIN, LOW);
delayMicroseconds(10);

// Leer 16 bits via SPI

for (int i = 15; 1 >= 0; i--) {
digitalWrite(SCK_PIN, HIGH);
delayMicroseconds(10);

if (digitalRead(SO_PIN)) {
valor |= (1 << 1i);

}

digitalWrite(SCK_PIN, LOW);
delayMicroseconds(10);

}
digitalWrite(CS_PIN, HIGH);

// Verificar sensor conectado

if (valor & 0x04) {
Serial.println("Error: Sensor no conectado");
return -999.0;

}

// Convertir a temperatura
valor >>= 3;
return valor * 0.25;

EXPLICACION DEL CODIGO

El codigo desarrollado para este proyecto cumple con la funcidon de medir, procesair,
comunicar y controlar la temperatura en tiempo real, utilizando el microcontrolador ESP32,
el sensor MAX6675 mediante protocolo SPI, la comunicacion Bluetooth y un actuador
conectado a un pin digital.

El programa se encuentra estructurado en diferentes secciones, las cuales se explican a
continuacion:

INCLUSION DE LIBRERIAS
#include <BluetoothSerial.h>
#include <SPI.h>

e La libreria BluetoothSerial.h permite establecer una comunicacion inalambrica
utilizando el médulo Bluetooth interno del ESP32.

o Lalibreria SPL.h permite manejar la comunicacion mediante el protocolo SPI entre el
ESP32 y el sensor MAX6675.

Estas librerias son indispensables para el funcionamiento de la lectura de datos del sensor y
la transmision inaldmbrica.

DECLARACION DE PINES

// Pines para MAX6675 (SPI)

const int SO _PIN = 19; // MISO

const int CS_PIN = 5; // Chip Select
const int SCK_PIN = 18; // SCK

// Pin para el actuador
const int ACTUADOR_PIN

e SO PIN (19): Pin de salida de datos del MAX6675 (MISO).
e CS_PIN (5): Pin de seleccion del dispositivo (Chip Select).
e SCK PIN (18): Pin del reloj de comunicacion SPI.

e ACTUADOR PIN (2): Pin asignado para el control del actuador (LED, relé, valvula
o solenoide).

Estos pines pueden cambiarse, siempre y cuando el nuevo pin sea compatible con el protocolo
SPI y entradas/salidas digitales del ESP32.

VARIABLES PRINCIPALES

// Objeto Bluetooth
BluetoothSerial SerialBT;

// Variables de control

float temperatura = 0.0;
unsigned long lastReadTime = 0;
unsigned long lastAlarmaSend = 0;
unsigned long lastFrioSend = 9;

// Variables para el actuador

char modoActuador = 'N'; // 'N'=Ninguno, 'M'=Manual,
"A'=Automatico
bool estadoActuador = false;

const unsigned long readInterval = 1000; // Lectura cada 1
segundo

const unsigned long alarmaInterval = 500; // Envio alarma cada
500ms

const unsigned long frioInterval = 500; // Envio frio cada
500ms

e temperatura: almacena el valor obtenido del sensor en grados Celsius.
e modoActuador: indica el modo de trabajo del actuador:

o 'M'— Manual

'A" — Automadtico

o 'N'— Desactivado
o estadoActuador: indica si el actuador esta activo (true) o inactivo (false).
e lastReadTime: guarda el momento de la ultima lectura para no saturar el sistema.
e READ INTERVAL: define que la lectura se realizara cada 1000 ms (1 segundo).

Esto permite un funcionamiento estable y ordenado del sistema.

FUNCION SETUP()

void 0O A
Serial.begin(115200);

// Configurar pines del MAX6675 (SPI)
pinMode(CS_PIN, OUTPUT);
pinMode(SO_PIN, INPUT);
pinMode(SCK_PIN, OUTPUT);
digitalWrite(CS_PIN, HIGH);
digitalWrite(SCK_PIN, LOW);

// Configurar pin del actuador
pinMode (ACTUADOR_PIN, OUTPUT);
digitalWrite (ACTUADOR_PIN, LOW);

// Inicializar Bluetooth
if (!SerialBT.begin("MONITOREO DE TEMPERATURA™)) {
Serial.println("Error al inicializar Bluetooth™);
} else {
Serial.println("Bluetooth inicializado: MONITOREO DE
TEMPERATURA");

}

Serial.println("Sistema de temperatura listo (SPI)");
Serial.println("Comandos: M=Manual, A=Automatico, N=Ninguno™);

}

Durante el setup() se realiza:

1. Inicializacion de la comunicacion serial a 115200 baudios para monitoreo en la

computadora.
2. Configuracion de los pines del MAX6675 y del actuador.
3. Establecimiento de estados iniciales:
o CS en HIGH (sensor inactivo).

o SCK en LOW (sin seiial de reloj).

o Actuador apagado.

4. Inicio del Bluetooth con el nombre "MONITOREO DE TEMPERATURA",

permitiendo que un dispositivo mdvil se conecte.

FUNCION LOOFPF()

void O |
unsigned long currentTime = millis();

// Leer temperatura cada intervalo

if (currentTime - lastReadTime >= readInterval) {
temperatura = leerTemperaturaSPI();
lastReadTime = currentTime;

if (temperatura == -999.0) {
Serial.println("Error leyendo sensor™);

} else {
Serial.print("Temperatura: ");
Serial.print(temperatura);
Serial.println(" °C");
enviarTemperaturaBasica();

}

}

// Controlar alarmas y actuador
controlarAlarmas(currentTime);
controlarActuador();
verificarComandosBluetooth();

Esta funcion se ejecuta continuamente y hace lo siguiente:
e (Cada segundo:
o Lee la temperatura del sensor.
o Sila lectura es valida, la envia por Bluetooth en un formato especial:

T25.50

e Verifica si hay comandos recibidos por Bluetooth.
e Controla el estado del actuador segun el modo seleccionado.

Esto crea un sistema en tiempo real.

FUNCION LEERTEMPERATURASPI() (NUCLEO DEL SISTEMA)

Esta funcion es la mas importante, ya que se encarga de leer los datos del MAX6675 mediante

SPI.

float () A
uintle_t valor

digitalWrite(CS_PIN, LOW);

delayMicroseconds(10);

// Leer 16 bits via SPI

for (int 1 = 15; 1 >= 0; i--) {
digitalWrite(SCK_PIN, HIGH);
delayMicroseconds(10);

if (digitalRead(SO_PIN)) {
valor |= (1 << i);

}

digitalWrite(SCK_PIN, LOW);
delayMicroseconds(10);
}

digitalWrite(CS_PIN, HIGH);

// Verificar sensor conectado

if (valor & 9x04) {
Serial.println("Error: Sensor no conectado™);
return -999.0;

}

// Convertir a temperatura
valor >>= 3;

return valor * 0.25;

}

1. Se baja el pin CS para iniciar comunicacioén con el MAX6675.

2. Se leen 16 bits de datos usando un ciclo for.

3. Cada bit se obtiene leyendo el pin SO cuando el reloj esta en HIGH.

4. Se verifica el bit de error (sensor desconectado).

5. Se recorre el valor 3 bits a la derecha (>>= 3).

6. El valor final se multiplica por 0.25, que es la resolucion del MAX6675.
7. Se obtiene la temperatura en grados Celsius.

Si ocurre un error, la funcion regresa -999.0, lo que le indica al sistema que hay un fallo en

el sensor.

CONTROL DEL ACTUADOR

El control se basa en tres modos:
e Manual (M): El actuador permanece encendido.
e Automatico (A): Se enciende cuando la temperatura es > 40 °C.
e Ninguno (N): El actuador permanece apagado.

Esto permite simular un sistema de control térmico como el de un ventilador, resistencia o

valvula.

ENSAMBLADO DEL SISTEMA

El ensamblado fisico del circuito se realizd utilizando una protoboard para facilitar la

conexion y modificacion de los componentes.

ORGANIZACION FISICA DE LOS ELEMENTOS

e EI ESP32 se coloco al centro de la protoboard.

e El médulo MAX6675 se ubico en un extremo para mayor accesibilidad.

e El actuador se coloco en una zona independiente, conectandolo al GPIO2.

e El termopar tipo K se conectd directamente al médulo MAX6675 mediante los

tornillos del modulo.

Esto permitié un montaje organizado, limpio y seguro.

CONEXIONES ELECTRICAS REALIZADAS

MAX6675 ESP32
VCC 3.3V
GND GND
SO GPIO 19
CS GPIO 5
SCK GPIO 18

El actuador fue conectado:

Actuador ESP32
Senal GPIO 2
GND GND
vcC 5V / 3.3V (dependiendo del
actuador)

CODIFICACION DE COLORES DE LOS CABLES
Para evitar errores en el armado del circuito, se utilizaron colores especificos:
@ Rojo — Alimentacioén (VCC)
@ Negro — Tierra (GND)
Amarillo — Sefiales SPI (SCK)
@ Azul — Seiiales SPI (SO)
Verde — Chip Select (CS)

Blanco — Senal del actuador

La organizacion visual facilito la deteccion de fallas.

PRUEBA DEL ENSAMBLADO

Antes de energizar el sistema, se verifico:

e Continuidad de las conexiones

e Ausencia de cortocircuitos

e Polaridad correcta

e Correcta conexion del termopar

e Integridad de los pines SPI

Después de la verificacion, se conect6 el ESP32 al puerto USB y se observaron los siguientes

resultados:
1. Se mostrd la temperatura en el monitor serial.
2. Se detecto el nombre Bluetooth en el celular.
3. Se enviaron cadenas correctamente.
4. El actuador respondi6 a los comandos M, A'y N.

5. Las alarmas se activaron segun los limites establecidos.

RESULTADO DEL ENSAMBLAJE

Una vez concluido el armado fisico del sistema de monitoreo y control de temperatura, se
realizaron varias pruebas funcionales con el objetivo de comprobar el correcto desempeio
de cada uno de los componentes y la comunicacion entre ellos. El ensamblaje final estuvo
compuesto por el microcontrolador ESP32, el médulo convertidor de temperatura MAX6675
con su respectivo termopar tipo K, un actuador de salida (LED/motor/relé), y un dispositivo

movil con conexion Bluetooth para el monitoreo remoto de los datos.

En la primera etapa de pruebas, se verificé la alimentacion del sistema mediante la
conexion del ESP32 a una fuente de 5 V por USB. Al encender el modulo, el LED de
alimentacion integrado en la tarjeta se ilumind correctamente, lo que confirmé que la placa
recibia energia de manera adecuada. Posteriormente, se utilizé el monitor serial del entorno
Arduino IDE para comprobar que el programa cargado iniciara correctamente, observandose
en pantalla los mensajes: “Bluetooth inicializado: MONITOREO DE TEMPERATURA” y
“Sistema de temperatura listo (SPI)”, 1o que indic6 que tanto el microcontrolador como la

comunicacion Bluetooth estaban correctamente configurados.

En la segunda etapa, se comprob6 la comunicacion entre el ESP32 y el sensor MAX6675
empleando el protocolo SPI. El termopar fue expuesto a distintas condiciones térmicas, como
temperatura ambiente, contacto directo con la mano y aproximacion a una fuente de calor
moderada. Al observar los valores en el monitor serial, se noté un incremento gradual y
coherente de la temperatura, pasando de aproximadamente 28 °C (ambiente) hasta valores
cercanos a 35-40 °C al aplicar calor, lo que evidencido que el sensor estaba midiendo

correctamente y que no existian errores de conexion entre los pines SO (MISO), CS y SCK.

También se comprobd la deteccion de error del sensor: al desconectar temporalmente el
termopar del médulo MAX6675, el sistema mostrd en pantalla el mensaje: “Error: Sensor
no conectado”, devolviendo el valor de -999.0. Esto confirm¢ el correcto funcionamiento
del mecanismo de verificacion y proteccion ante fallos del sensor, lo que aumenta la

confiabilidad del sistema.

En la tercera etapa, se evalu6 el funcionamiento del actuador conectado al pin digital 2 del
ESP32. En modo manual, a través del envio de comandos por Bluetooth (por ejemplo, la letra
“M”), el actuador respondié de manera inmediata, cambiando su estado entre encendido y
apagado. Esto permitid comprobar que el ESP32 recibia correctamente datos desde el
dispositivo movil y que podia accionar una salida fisica segiin la orden recibida. En modo
automatico (“A”), el actuador se activo o desactivo en funcion de la temperatura medida,

demostrando la integracion efectiva del sistema de control con la variable de proceso.

Adicionalmente, se verifico la estabilidad del sistema en funcionamiento continuo durante
un periodo aproximado de 20 minutos. Durante este lapso no se presentaron reinicios
inesperados, lecturas erraticas ni fallas en la comunicacion, lo que indica que el ensamblaje
fisico fue adecuado y que las conexiones fueron firmes y correctas. La informacion de
temperatura fue enviada de manera constante cada segundo via Bluetooth, cumpliendo con

el intervalo definido en el codigo (readInterval = 1000 ms).

Finalmente, el montaje resultd ser compacto, funcional y facil de manipular. Las conexiones
realizadas con cables Dupont mantuvieron un buen contacto durante toda la prueba, y el uso
de una protoboard facilité la organizacion de los componentes. El sistema ensamblado
demostro ser una solucion eficiente para el monitoreo y control de temperatura en tiempo
real, confirmando que la integracion entre hardware y software fue exitosa y que cumple con

los objetivos propuestos en la practica.

VIDEO FUNCIONANDO

https:/youtu.be/LeorkOkJuaO

https://youtu.be/Leork0kJua0

CONCLUSION

En la presente practica se diseiio e implemento un sistema de monitoreo y control de
temperatura utilizando el microcontrolador ESP32 en conjunto con el sensor MAX6675 y un
termopar tipo K, logrando medir, procesar y transmitir informacion térmica en tiempo real
mediante comunicacion Bluetooth. El sistema demostro un funcionamiento estable y
continuo, permitiendo la visualizacion de la temperatura y la generacion automdtica de
alertas cuando se alcanzaban valores criticos, lo que evidencia su utilidad en aplicaciones

de supervision térmica.

Asimismo, se implemento el control de un actuador, el cual pudo ser manipulado de manera
manual o automatica dependiendo de la temperatura detectada, simulando un proceso de
control industrial basico. Esta caracteristica permitio comprender de manera practica el uso
de algoritmos de control, la toma de decisiones basada en sensores y la automatizacion de

Procesos.

Durante el desarrollo de esta prdctica se reforzaron conocimientos importantes relacionados
con la programacion de microcontroladores, el protocolo de comunicacion SPI, la
transmision inalambrica via Bluetooth y la integracion de sensores y actuadores dentro de
un sistema embebido. Ademas, se fortalecieron habilidades como la interpretacion de
diagramas, el armado de circuitos en protoboard, la depuracion de codigo y la verificacion

del funcionamiento de cada componente.

Finalmente, este proyecto demuestra que es posible desarrollar sistemas eficientes, precisos
v de bajo costo para el monitoreo y control de temperatura, los cuales pueden aplicarse en
dambitos industriales, educativos y domésticos, representando una base solida para la

implementacion de proyectos mas complejos en el area de automatizacion y control.

