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INTRODUCCIÓN 
 

En el ámbito de los sistemas embebidos, la eficiencia de un diseño no se mide solo por la 

velocidad de procesamiento, sino por la capacidad del microcontrolador para gestionar 

eventos temporales y señales externas de manera autónoma. La presente investigación aborda 

la unidad temática 5: "Programación del módulo CCP del microcontrolador", un 

periférico multifuncional que integra las capacidades de Captura, Comparación y PWM 

(Modulación por Ancho de Pulso). 

 

El estudio comienza con la descripción del módulo (5.1), detallando su arquitectura interna 

y su dependencia crítica de los recursos de temporización (Timers), lo cual sienta las bases 

para comprender sus tres modos operativos. Se analizará profundamente la Configuración 

como Comparador (5.2), esencial para la generación de eventos temporales precisos, y la 

Configuración como Captura (5.3), que permite medir intervalos de señales externas con 

exactitud de hardware. Asimismo, se examina el modo PWM (5.4), una herramienta estándar 

en la industria para el control de potencia y motores, donde la relación entre frecuencia y 

ciclo de trabajo es vital. Finalmente, el informe integra estos conceptos en el Desarrollo de 

aplicaciones (5.5), demostrando cómo la correcta programación de registros como 

CCPxCON y CCPRx permite descargar a la CPU de tareas repetitivas, optimizando el 

rendimiento global del sistema.    

  



5.1 DESCRIPCIÓN DEL MÓDULO CCP. 
 

El módulo CCP se caracteriza por su versatilidad, lograda a través de una arquitectura 

configurable que comparte recursos físicos para realizar tres funciones distintas. En la 

mayoría de los dispositivos de gama media, como el PIC16F887 o el PIC16F877A, se 

encuentran dos instancias de este módulo: CCP1 y CCP2. Aunque funcionalmente idénticos 

en su operación básica, su integración con el resto del microcontrolador presenta matices 

importantes. 

 

 

 

 

El Núcleo del Módulo: Registro de 16 bits 

En el centro de la arquitectura del módulo CCP reside un registro de datos de 16 bits. Dado 

que los microcontroladores PIC de 8 bits (como las series PIC10, PIC12, PIC16 y PIC18) 

operan con un bus de datos de 8 bits, este registro de 16 bits se divide físicamente en dos 

registros de funciones especiales (SFR) de 8 bits cada uno: 

• CCPRxL (CCP Register Low): Contiene los 8 bits menos significativos. 



• CCPRxH (CCP Register High): Contiene los 8 bits más significativos. 

 

Donde 'x' representa el número del módulo (1 o 2). 

 

La función de este par de registros es polimórfica; su comportamiento cambia radicalmente 

según el modo seleccionado en el registro de control CCPxCON :    

1. En Modo Captura: El par CCPRxH:CCPRxL actúa como un registro de destino. 

Está conectado internamente al bus de datos del Timer1 (o Timer3 en PIC18). Cuando 

un evento de disparo ocurre en el pin físico, el hardware transfiere instantáneamente 

el valor del temporizador a estos registros, "capturando" el tiempo del evento. 



2. En Modo Comparación: El par actúa como un registro de comparación. El usuario 

carga un valor de tiempo objetivo en ellos. Un comparador digital de hardware 

monitorea constantemente la igualdad entre este registro y el temporizador del 

sistema. 

3. En Modo PWM: La arquitectura cambia. El registro de 16 bits se utiliza para 

almacenar el ciclo de trabajo (Duty Cycle). Sin embargo, aquí ocurre una 

particularidad: CCPRxL almacena los 8 bits más significativos del ciclo de trabajo, 

mientras que CCPRxH se convierte en un registro de "sombra" (shadow register) o 

buffer de lectura solamente, gestionado por el hardware para evitar glitches durante 

las transiciones de pulso. Los 2 bits menos significativos del ciclo de trabajo se 

reubican en el registro de control CCPxCON, logrando así una resolución de 10 

bits.    

 

Pines de Entrada y Salida (Multiplexación) 

El módulo CCP interactúa con el mundo exterior a través de pines físicos. Debido a la 

limitación de pines en los encapsulados, estos pines están multiplexados con otras funciones, 

generalmente puertos de E/S digitales. 

• CCP1: Típicamente asignado al pin RC2 (Puerto C, bit 2). 

 



• CCP2: Típicamente asignado al pin RC1 (Puerto C, bit 1). 

 

 

Es crucial notar que en ciertos dispositivos, como el PIC16F887 o PIC18F4550, el pin del 

módulo CCP2 puede ser reconfigurado o "movido" a otro pin (como RB3) mediante bits de 

configuración (Configuration Bits o Fuses) al momento de programar el chip. Esto otorga 

flexibilidad al diseñador de PCB (Printed Circuit Board) para facilitar el enrutamiento de 

pistas.    

 

Consideración de Hardware: Para que el módulo CCP funcione, el registro de dirección de 

datos (TRIS) correspondiente al pin debe configurarse correctamente. 

• En Modo Captura, el pin debe ser configurado como Entrada (TRIS = 1). 

• En Modos Comparación y PWM, el pin debe ser configurado como Salida (TRIS 

= 0). Si se configura como entrada en estos modos, la operación lógica interna 

ocurrirá, pero la señal no será visible en el pin físico. 

 

 



Análisis Detallado de los Registros de Control 

La "Programación del módulo CCP" (Tema 5 del syllabus) se realiza fundamentalmente 

manipulando los bits de los registros de control. Un entendimiento superficial de estos bits 

lleva a implementaciones erróneas. A continuación, se presenta un análisis exhaustivo del 

registro CCPxCON. 

 

 

  



5.2 CONFIGURACIÓN Y 

PROGRAMACIÓN DEL MÓDULO CCP 

COMO COMPARADOR. 
 

El módulo CCP (Capture/Compare/PWM) representa uno de los periféricos más versátiles y 

robustos incorporados en microcontroladores de arquitectura de 8 y 16 bits, especialmente en 

dispositivos de la familia PIC. Su finalidad es asistir en operaciones críticas de temporización y 

control que exigen una respuesta determinística y con baja latencia. Dentro de sus tres modos de 

operación, el modo Comparador destaca por permitir la generación de eventos basados en 

coincidencias entre un temporizador y un valor previamente configurado por el usuario, lo cual 

facilita la creación de secuencias temporales exactas, señales de control y mecanismos de 

sincronización entre módulos internos y externos del sistema. 

Este modo opera apoyándose en un temporizador de 16 bits, comúnmente TMR1, el cual actúa como 

base de tiempo. Los valores de comparación se almacenan en el registro CCPRx, compuesto por 

CCPRxH y CCPRxL. Cuando la cuenta del temporizador coincide con el valor configurado en 

CCPRx, el hardware produce un evento inmediato, ya sea una interrupción, un cambio de estado en 

el pin CCP o la ejecución de una función especial. Debido a que el proceso ocurre sin intervención 

del CPU en el ciclo crítico, el comportamiento es altamente confiable y presenta un desfase 

prácticamente inexistente, lo que resulta esencial en procesos industriales o sistemas embebidos 

donde el tiempo real es un requerimiento. 

 

Arquitectura Interna del Modo Comparador 

Desde una perspectiva funcional, el comparador del CCP está integrado por: 

• Un latch de 16 bits para almacenar el valor de referencia. 

• Una lógica de comparación que analiza permanentemente el valor del temporizador. 

• Un conjunto de multiplicadores lógicos que determinan la acción a ejecutar en el pin de 

salida. 

• Una unidad de eventos especiales que puede interactuar con periféricos como el ADC o 

módulos de reset de temporizadores. 



 

El diseño está optimizado para realizar la comparación en una sola operación lógica interna, evitando 

ciclos adicionales y minimizando la latencia. Esto significa que incluso en sistemas con carga elevada, 

el tiempo de respuesta del comparador permanece estable y confiable, aun cuando se ejecuten rutinas 

pesadas en paralelo. Cabe destacar que un error mínimo en la configuración del temporizador puede 

producir desalineación temporal, lo cual debe evitarse mediante cálculos detallados de preescalers y 

frecuencias. 

 

Procedimiento Detallado de Configuración 

1. Selección del Modo de Comparación 

El primer paso consiste en escribir los bits CCPxM3:CCPxM0 en el registro CCPxCON. Algunas 

modalidades típicas incluyen: 

• 1001: Forzar salida CCPx a nivel alto en coincidencia. 

• 1000: Forzar salida CCPx a nivel bajo en coincidencia. 

• 1010: Generar una interrupción sin modificar el pin. 

• 1011: Activar evento especial, útil para resetear TMR1 o iniciar una conversión ADC. 

Una selección adecuada depende de la naturaleza del proceso a controlar. Por ejemplo, si se requiere 

generar un pulso preciso, se recomienda utilizar los modos que modifican el pin de salida 

directamente. 



2. Configuración del Valor de Comparación 

El valor preestablecido del evento se carga en: 

• CCPRxH (bits altos) 

• CCPRxL (bits bajos) 

La escritura debe realizarse preferentemente con el temporizador detenido para evitar que un valor 

parcial produzca una coincidencia accidental durante la carga. Este detalle suele causar errores en 

principiantes, generando activaciones no deseadas del comparador. 

3. Programación del Temporizador Asociado (TMR1) 

El temporizador debe configurarse cuidadosamente: 

• Fuente de reloj interna o externa. 

• Preescaler (1:1, 1:2, 1:4, 1:8). 

• Selección de sincronización en caso de usar reloj externo. 

• Activación del oscilador especial T1OSC (si se requiere alta estabilidad). 

El valor inicial del temporizador puede ser configurado en cero o en cualquier número específico si 

se requiere un desplazamiento temporal inicial. 

4. Configuración del Pin CCPx 

El pin físico asociado debe programarse como salida digital usando TRISx. 

La incorrecta configuración de este pin es una de las causas más comunes de mal funcionamiento, ya 

que el hardware del CCP puede generar un evento correcto, pero si el pin está configurado como 

entrada, la salida no se reflejará externamente. 

5. Habilitación de Interrupciones (Opcional) 

Si se necesita reaccionar inmediatamente al evento del comparador, se activan: 

• Bit de interrupción CCPxIE en PIE1. 

• Bit de habilitación global GIE. 

• Bit de prioridad si el microcontrolador lo soporta. 



La rutina de servicio debe ser lo más breve posible para evitar retardo acumulado en sistemas de alta 

frecuencia. 

 

Limitaciones Operativas 

Aunque el módulo es altamente confiable, presenta algunas limitaciones: 

• Si el temporizador TMR1 se comparte con otros procesos, puede generar conflictos de 

sincronización. 

• La resolución está limitada por el reloj del temporizador; valores muy pequeños pueden no 

ser alcanzables. 

• El hardware del pin CCP puede presentar incompatibilidades si comparte funciones con 

módulos como USB u osciladores secundarios. 

• Valores grandes de preescaler disminuyen la precisión temporal fina. 

En algunos casos es necesario recalcular dinámicamente el registro CCPRx dentro de la rutina de 

interrupción, especialmente si se desea generar sistemas periódicos con intervalos variables. 

 

Ejemplo Práctico: Generación de un Pulso Preciso para Control de una 

Válvula Industrial 

A continuación, se presenta un ejemplo típico donde el modo comparador es indispensable: generar 

un pulso de 10 ms para accionar una válvula solenoide utilizada en un sistema de dosificación. 

Objetivo del Sistema 

La válvula debe activarse durante 10 ms exactos cada vez que se recibe una señal de inicio. La 

precisión es crítica, ya que la cantidad de fluido dosificado depende directamente del tiempo de 

apertura. 

Configuración Base 

• Frecuencia del reloj: 4 MHz 

• TMR1 con preescaler 1:1 



• Período de incremento: 1 µs 

• Tiempo deseado: 10 000 µs = 10 ms 

Por lo tanto: 

Valor de comparación = 10 000 decimal = 0x2710 

Procedimiento de Configuración 

1. Configurar TMR1 en modo temporizador con preescaler 1:1. 

2. Cargar el registro CCPR1H = 0x27 y CCPR1L = 0x10. 

3. Configurar CCP1 en modo “Compare — force high on match” (CCP1M = 1001). 

4. Configurar el pin CCP1 como salida para controlar la válvula. 

5. Activar interrupción CCP1 para desactivar la válvula cuando ocurra el evento. 

Secuencia de Operación 

1. El sistema detecta una señal de inicio. 

2. Se coloca el pin CCP1 en estado bajo (cerrado). 

3. Se resetea TMR1 a cero y se inicia su conteo. 

4. Cuando TMR1 = 10 000, el hardware del CCP pone automáticamente el pin CCP1 en alto, 

abriendo la válvula. 

5. Dentro de la interrupción CCP1, se vuelve a cargar un segundo valor de comparación para 

cerrar la válvula tras otro tiempo determinado, o bien se apaga manualmente la salida. 

Este proceso garantiza que la duración de apertura no depende del software ni de interrupciones 

externas, eliminando errores cumulativos y asegurando una dosificación exacta incluso con carga 

elevada del sistema. 

 



5.3 CONFIGURACION Y 

PROGRAMACIÓN COMO CAPTURA 

 

El módulo CCP (Capture/Compare/PWM) es un periférico especial que permite trabajar con señales 

temporizadas. Fue diseñado para interactuar con eventos tanto internos como externos. 

Cuando está en modo Captura, su función principal es: 

Registrar el valor exacto del temporizador TMR1 cuando ocurre un evento externo en el pin CCPx. 

Esto permite medir el tiempo entre: 

• Flancos ascendentes 

• Flancos descendentes 

• Pulsos 

• Ondas periódicas 

 

¿QUÉ ES EL MODO CAPTURA (CAPTURE MODE)? 

El modo captura permite registrar el valor actual del temporizador (TMR1) cuando se detecta un 

evento en el pin CCP1 o CCP2. 

Esto sirve para: 

• Medir frecuencia de señales. 

• Medir periodo. 

• Determinar tiempos entre flancos. 

• Medir ancho de un pulso. 

• Implementar tacómetros, cronómetros o sensores de velocidad. 

En resumen: 

El módulo captura el contenido del TMR1 justo cuando ocurre un flanco externo → guarda el tiempo 

exacto del evento. 

La configuración y programación del modo de captura (CAPTURE MODE) implica inicializar un 

módulo de microcontrolador (como el módulo CCP en microcontroladores PIC) para registrar el valor 

de un temporizador en un momento específico, generalmente en respuesta a un flanco (ascendente o 

descendente) de una señal externa. La programación requiere configurar el pin correspondiente como 



entrada, inicializar el temporizador asociado, seleccionar el tipo de flanco a capturar y configurar las 

interrupciones si es necesario.  

MODO CAPTURA 

El modo de Captura es una de las tres funciones posibles que puede desempeñar cada módulo CCP 

(Capture-Compare-PWM) del PIC. Normalmente hay 2 módulos CCP1 y CCP2 con pines asociados 

RC2 y RC1 (notad la inversión en la asignación de pines). Es posible dedicar cada módulo CCPx a 

una función distinta. Uno podría estar en modo CAPTURA (usando TMR1) y el otro en modo PWM 

(usando TMR2). Incluso usando ambos en modo CAPTURA podríamos usar una base de tiempos 

distinta en cada módulo. 

 

ARQUITECTURA INTERNA DEL MÓDULO CCP (VISTA EN MODO CAPTURA)  

El sistema interno (según Microchip) involucra: 

1. Pin CCPx 

Entrada por donde la señal externa entra al módulo. 

2. Divisor de eventos (Prescaler interno del CCP) 

Puede capturar: 

o Cada evento 

o Cada 4 eventos 

o Cada 16 eventos 

3. Latch de captura (registro CCPRxL/H) 

Guarda el valor de 16 bits cuando ocurre el evento. 

4. Interfaz con TMR1 

El CCP "lee" el valor instantáneo de TMR1. 

5. Bandera (CCPxIF) 

Se activa automáticamente cuando hay una captura. 

6. Interrupción del CCP 

Si está habilitada, la CPU salta a la rutina ISR. 



LA SIGUIENTE TABLA DEL DATASHEET MUESTRA LAS POSIBILIDADES DE COMBINACIÓN: 

 

  



Cada uno de los módulos CCP tiene asociados varios registros (cambiar la x en lo sucesivo por 1 o 

2): 

 

CCPxCON: con este registro definiremos el tipo de operación (Capture / Compare / PWM) del 

módulo. El valor para seleccionar modo de CAPTURA es:  

 

0b 000001xx 

                  

Los dos últimos bits configuran el tipo de evento a capturar: 

·  00: capturar cada caída de la línea. 

·  01: capturar cada subida de la línea. 

·  10: capturar cada 4ª subida de línea. 

·  11: capturar cada 16º subida de línea. 

 

CCPRxH,CCPRxL: dos registros de 8 bits. En el modo captura guardan el valor de un timer (TMR0 

o TMR3) corriendo en modo 16 bits en el momento de producirse el evento. 

 

En el caso del modo captura, también tendremos que configurar ciertos bits especiales del registro 

del timer TMR3 (T3CON) que seleccionan que timer se asocia al módulo de captura.  Es posible 

configurar ambos módulos en modo captura y aún así usar timers distintos (TMR1 o TMR3) en cada 

uno de ellos (al contrario que lo que vimos en modo PWM, donde los dos módulos compartían el 

mismo timer (TMR2). 

 

• T3CON.T3CCP2 : bit 6 de T3CON 

• T3CON.T3CCP1 : bit 3 de T3CON 

Notad que ambos bits no están consecutivos en T3CON. Valores posibles para estos bits: 

 



1x --> TMR3 para ambos módulos 

01 --> TMR3 usado en CCP2, TMR1 usado en CCP1 

00 --> TMR1 usado en ambos módulos. 

 

Además de los registros anteriores el modo CAPTURE tiene definida una interrupción, que salta (si 

está habilitada) cuando se produzca un evento.  Esta interrupción se usa a menudo porque lo que se 

suele querer medir es la separación entre dos eventos (periodo, ancho de un pulso, etc.). Si no hacemos 

nada, al suceder el segundo evento, el PIC sobre-escribirá el tiempo del primero. La interrupción nos 

permite guardar el primer tiempo antes de ser sobrescrito. 

 

Si los eventos se suceden muy rápido (p.e. del orden de 1 usec) podría ser que la interrupción no 

llegue a tiempo de guardar el 1er valor. En ese caso podemos programar un prescaler (modos 10 o 11 

en CCPCON) para definir el evento como 1 de cada 4 o 1 de cada 16. De esta forma también 

mejoraríamos la calidad de la medida al promediar varios periodos. 

 

 

INICIALIZACIÓN MÓDULO CCP Y TIMER ASOCIADO 

 

Veamos un ejemplo de los pasos a realizar para usar el modo CAPTURE. Por ejemplo, para usar 

CCP1 con TMR3 como timer asociado, debemos: 

1. Configurar el timer a usar (TMR3) en modo 16 bits, con el prescaler escogido, definiendo así 

la base de tiempos a usar. 

2. Arrancar el timer (TMR3) a usar.  

3. Poner los bits T3CCP2 y T3CCP1 de T3CON a 1 para seleccionar el uso de TMR3 como 

timer asociado a ambos módulos CCP. 

4. Declarar el pin correspondiente (en este caso RC2, asociado a CCP1) como entrada. 

5. Habilitar el módulo CCP1 en modo CAPTURE con la definición de evento que se desee (1x 

subida, 1x caída, x4, x16) 



6. Si vamos a usar la interrupción de CCP1, habilitarla y declararla de alta prioridad 

(aconsejable pues no queremos "saltarnos" un evento). 

 

VEAMOS EL CÓDIGO PARA LLEVAR A CABO LOS PASOS ANTERIORES. 

El timer se pondrá en marcha en modo 16 bits y se dejará en modo "free-running" sin interferencia 

alguna (no tocaremos el contador del TMR3). En el proyecto estoy usando un cristal de 8 MHz por 

lo que el ciclo de instrucción es de ½ microsegundo. Por comodidad usare un PRESCALER 1:2 en 

el timer TMR3, de forma que cada incremento de su contador representará 1 microsegundo. Sería 

fácil configurar T3CON por nuestra cuenta, pero en este ejemplo usaremos las funciones de C18: 

 

// Starts TMR3 using OSC as source, 16bit mode, 

// with 1:2 prescaler (1 usec @ 8 

MHz) OpenTimer3(TIMER_INT_OFF&T3_16BIT_RW&T3_SOURCE_INT&T3_PS_1_2

&T3_SOURCE_CCP); 

// TMR3 as source for both CCP1/CCP2 

 T3CONbits.T3CCP2=1; T3CONbits.T3CCP1=1;  

 

 

 

Aquí creo que hay un bug en C18. Según la documentación hay una máscara (T3_SOURCE_CCP) 

que, si se añadiese al argumento de  OpenTimer3, pondría los valores adecuados en los bits T3CCP1 

y T3CCP2 de forma que TMR3 fuese el timer a usar por ambos módulos. Sin embargo, cuando la uso 

no se ponen los bits a su valor correcto (1). Es por esto por lo que necesito ponerlos a 1 "manualmente" 

en la siguiente línea. 

 

Para que el módulo CCP1 funcione correctamente y detecte los eventos es necesario que su pin 

asociado (RC2) esté declarado como una entrada:   

 

TRISCbits.TRISC2=1; // RC2 as input   



Ahora vamos a configurar el módulo CCP1 en modo CAPTURA. Por ejemplo, si deseamos 

configurar CCP1 en modo 4X (un evento es la llegada de 4º pulsos o más específicamente, la llegada 

de la 4º subida) basta hacer:  

 CCP1CON=0b00000110; // Modo CAPTURE. Event = x4 rising edges 

 

Para hacer el programa más legible podríamos usar la correspondiente rutina de C18 (en este caso 

tendríamos que incluir fichero capture.h):  

// CCP1CON=0b00000111 Modo CAPTURE. Event = x16 rising edges 

 OpenCapture1(CAPTURE_INT_OFF,C1_EVERY_4_RISE_EDGE); 

 

Finalmente habilitaríamos la interrupción del CCP (alta prioridad):  

enable_priority_levels;  

 enable_CCP1_int; set_CCP1_high; 

 enable_high_ints; enable_low_ints; 

 

Ese sería el código de inicialización en el programa principal. Como hemos habilitado la interrupción 

CCP1 debemos escribir una ISR que maneje dicha interrupción.  Obviamente lo que hagamos en esa 

interrupción dependerá de la aplicación en la que estemos pensando. Sin embargo, en muchas 

ocasiones, lo que si querremos hacer es guardar el tiempo (registros CCPR1H:CCPR1L) del evento 

que ha provocado la interrupción y calcular la separación con el evento anterior. Veamos como 

escribir una sencilla ISR para conseguir esos objetivos:   



uint16 t0=0; 
uint16 dt=0; 
 
// High priority interruption 
#pragma interrupt high_ISR 
void high_ISR (void) 
{ 
 uint16 t; 
 if (CCP1_flag) 
  { 
   t=CCPR1H; t<<=8; t+=CCPR1L;    // Read CCPR1 (time of event 
that just happened) 
   dt = (t-t0);  // Interval between events  
   t0 = t;  // Keep latest time in t0 
   CCP1_flag=0; 
  } 
} 
 
// Code @ 0x0008 -> Jump to ISR for high priority ints 
#pragma code high_vector = 0x0008 
  void high_interrupt (void){_asm goto high_ISR _endasm} 
#pragma code 
 

 

El código es muy sencillo. Hay dos variables externas t0 y dt de tipo uint16. La ISR lee el momento 

del último evento (de CCPR1H:CCPR1L) y lo salva en t. Calcula el intervalo con el último evento 

(t-t0) y lo guarda en dt. Después actualiza t0 (último evento) con el valor de t.   

De esta forma en t0 guarda el momento del último evento y en dt tenemos siempre disponible el valor 

más reciente de la separación de eventos.  

La limitación de este enfoque es que si la separación entre eventos supera los 65536 "clocks" del 

timer TMR3 va a haber un rollover y a la resta (t-t0) le faltará añadirle 65536, 65336x2, etc. 

Una solución sería habilitar la interrupción del TMR3 y llevar la cuenta del número de rebosamientos 

que tienen lugar entre un evento y el siguiente. En ese caso el intervalo entre eventos sería: 

                       # rebosamientos x 65536  + dt 

En este caso no lo hemos implementado, por lo que la separación entre eventos no debería exceder 

los 65536 microsegundos.  

 



EJEMPLO COMPLETO EN C (PARA PIC16F877A) 

#include <xc.h> 

#define _XTAL_FREQ 4000000 

 

volatile unsigned int cap1 = 0; 

volatile unsigned int cap2 = 0; 

volatile unsigned char flag = 0; 

 

void __interrupt() ISR(void){ 

 

    if(PIR1bits.CCP1IF){ 

        if(flag == 0){ 

            cap1 = ((unsigned int)CCPR1H << 8) | CCPR1L; 

            flag = 1; 

        } else { 

            cap2 = ((unsigned int)CCPR1H << 8) | CCPR1L; 

            flag = 2; 

        } 

        PIR1bits.CCP1IF = 0; 

    } 

} 

 

void main(void){ 

 

    TRISCbits.TRISC2 = 1; // CCP1 como entrada 

 

    T1CON = 0x01;         // TMR1 ON, prescaler 1:1 

 

    CCP1CON = 0b00000100; // captura por flanco ascendente 



 

    PIR1bits.CCP1IF = 0; 

    PIE1bits.CCP1IE = 1; 

 

    INTCONbits.PEIE = 1; 

    INTCONbits.GIE = 1; 

 

    while(1){ 

        if(flag == 2){ 

            unsigned int periodo = cap2 - cap1; 

            flag = 0; 

        } 

    } 

} 

 

El módulo CCP en modo Captura es fundamental para medir tiempos y frecuencias con alta 

precisión en microcontroladores PIC. Mediante hardware especializado, permite detectar eventos 

externos y registrar el tiempo exacto del suceso mediante el temporizador TMR1. 

Al dominar este módulo, se pueden desarrollar sistemas avanzados como medidores de RPM, 

periodómetros, cronómetros, sensores industriales, lectura de pulsos, e incluso sistemas de 

sincronización en tiempo real. 

 

  



5.4 CONFIGURACION Y 

PROGRAMACIÓN COMO PWM 

Los motores de corriente directa poseen una inductancia significativa en sus devanados, la 

cual juega un papel crítico cuando el motor es alimentado mediante señales de Modulación 

por Ancho de Pulso (PWM). Desde el punto de vista eléctrico, el motor puede modelarse 

como una combinación serie de resistencia 𝑅, inductancia 𝐿y una fuente dependiente de 

voltaje correspondiente a la fuerza contraelectromotriz (𝐸𝑏𝑒𝑚𝑓). Cuando se aplica un PWM, 

el voltaje promedio aplicado al motor depende del ciclo de trabajo, pero la respuesta real de 

corriente depende fuertemente de la frecuencia con que se conmuta la señal. 

 

 

Diagrama de bloques de la lógica de salida y direccionamiento (Steering) del módulo ECCP en 

microcontroladores PIC. 

 

1. Modelo Eléctrico Inductivo del Motor 

Un motor DC pequeño suele modelarse como: 

𝑉𝑃𝑊𝑀(𝑡) = 𝑖(𝑡)𝑅 + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝐸𝑏𝑒𝑚𝑓 



 

Cuando el transistor de potencia está en ON, el voltaje aplicado al devanado es 

aproximadamente 𝑉𝑠𝑢𝑝𝑝𝑙𝑦. 

Cuando está en OFF, el devanado queda recirculando corriente mediante el diodo de rueda 

libre. 

La solución diferencial para la corriente durante el estado ON es: 

𝑖(𝑡) = 𝐼0𝑒
−
𝑅
𝐿
𝑡 +

𝑉𝑠𝑢𝑝𝑝𝑙𝑦 − 𝐸𝑏𝑒𝑚𝑓

𝑅
(1 − 𝑒−

𝑅
𝐿
𝑡) 

 

 

Y durante el estado OFF: 

𝑖(𝑡) = 𝐼𝑂𝑁𝑒
−
𝑅
𝐿
𝑡 

 

Estas expresiones explican por qué el devanado se opone a cambios rápidos: cuanto mayor 

sea la frecuencia PWM, menor es el tiempo disponible para que la corriente crezca y decaiga, 

lo que reduce la ondulación (ripple). 

 

2. Frecuencia PWM y Ripple de Corriente 

La ondulación de corriente es aproximada por: 

Δ𝑖 =
𝑉𝑠𝑢𝑝𝑝𝑙𝑦 − 𝐸𝑏𝑒𝑚𝑓

𝐿
⋅ 𝐷 ⋅ 𝑇𝑃𝑊𝑀 

 

donde: 



• 𝐷= ciclo de trabajo 

• 𝑇𝑃𝑊𝑀 = 1/𝐹𝑃𝑊𝑀= periodo de la señal PWM 

• 𝐿= inductancia del motor 

 

Conclusión directa: 

Δ𝑖 ∝
1

𝐹𝑃𝑊𝑀
 

 

⇒ A mayor frecuencia PWM → menor ondulación → par más estable. 

Cuando la frecuencia PWM se mantiene por debajo de ~1 kHz, el ripple es tan grande que 

genera vibraciones mecánicas visibles y ruido audible. 

A frecuencias por arriba de 15–20 kHz, el motor opera casi como si recibiera un voltaje DC 

constante. 

 

3. Efecto de la Frecuencia PWM en el Par del Motor 

El par generado por un motor DC es proporcional a la corriente instantánea: 

𝜏(𝑡) = 𝐾𝑡 ⋅ 𝑖(𝑡) 

 

Debido a esto: 

• PWM de baja frecuencia produce un par fluctuante: 

𝜏inst(𝑡)varía significativamente. 

• PWM de alta frecuencia produce par casi constante: 

𝜏inst(𝑡) ≈ 𝜏𝑎𝑣𝑔 



Cuando el ripple disminuye, también disminuyen los picos de torque que generan vibración 

mecánica y ruido. 

 

4. Efecto de la Frecuencia PWM en la Eficiencia y el Calentamiento 

La transición ON–OFF produce pérdidas de conmutación en el transistor que controla el 

motor. 

Las pérdidas de conmutación dependen de: 

𝑃𝑠𝑤 ≈
1

2
𝑉𝐼(𝑡𝑟𝑖𝑠𝑒 + 𝑡𝑓𝑎𝑙𝑙)𝐹𝑃𝑊𝑀 

 

Por lo tanto: 

• Si la frecuencia PWM es muy alta, aumentan las pérdidas. 

• Si la frecuencia es muy baja, aumenta el ripple y el motor vibra. 

Por esto, en control de velocidad típico se eligen: 

15 kHz ≤ 𝐹𝑃𝑊𝑀 ≤ 25 kHz 

 

Es el rango ideal entre ruido, par estable y eficiencia. 

 

5. Relación entre Frecuencia PWM y Resolución del PWM 

El módulo CCP del PIC cuenta con 10 bits de resolución, pero esta resolución se reduce si 

la frecuencia PWM se hace demasiado alta. 

 



Recordemos que: 

𝐹𝑃𝑊𝑀 =
𝐹𝑂𝑆𝐶

4(𝑃𝑅2 + 1) ⋅ 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟
 

 

y la resolución en pasos reales disponibles es: 

𝑁 = 4(𝑃𝑅2 + 1) 

 

y en bits: 

Resolución𝑏𝑖𝑡𝑠 = log⁡2(𝑁) 

 

Si elevas la frecuencia PWM, debes bajar 𝑃𝑅2. 

Si bajas 𝑃𝑅2, se reduce la resolución. 

Ejemplo: 

Si se usa una frecuencia PWM muy alta que obliga a un PR2 = 49: 

𝑁 = 4(49 + 1) = 200 ⇒ log⁡2(200) = 7.64 bits 

 

Se está perdiendo resolución → control más brusco. 

 

 

 

 

 

 

 

 

 

 



6. Código de Ejemplo con Fórmulas Aplicadas (XC8) 

Configuración para 20 kHz, usando la ecuación: 

𝑃𝑅2 =
𝐹𝑂𝑆𝐶

4 ⋅ 𝐹𝑃𝑊𝑀 ⋅ 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟
− 1 

 

Con 𝐹𝑂𝑆𝐶 = 20 MHz, Prescaler = 1:4: 

𝑃𝑅2 =
20,000,000

4 ⋅ 20,000 ⋅ 4
− 1 = 249 

 

 

 

// ============================ 

// PWM PIC16F877A - 20 kHz 

// ============================ 

 

#define _XTAL_FREQ 20000000   // 20 MHz 

 

void PWM_Init(unsigned int duty){ 

     

    TRISCbits.TRISC2 = 1; // Entrada temporal (evita glitches) 

 

    PR2 = 249;            // fPWM = 20 kHz 

 

    CCPR1L = duty >> 2; 

    CCP1CONbits.DC1B = duty & 0x03; 

 

    T2CONbits.T2CKPS = 0b01; // Prescaler 1:4 

    T2CONbits.TMR2ON = 1; 

 

    CCP1CONbits.CCP1M = 0b1100; // Modo PWM 

 

    __delay_ms(1); 

    TRISCbits.TRISC2 = 0;      // Ahora sí salida 

} 

 

void PWM_SetDuty(unsigned int duty){ 

    CCPR1L = duty >> 2; 

    CCP1CONbits.DC1B = duty & 0x03; 

} 

 

void main(){ 



 

    PWM_Init(512); // 50% 

 

    while(1){ 

        // Ejemplo: rampa de control suave 

        for(int i=0; i<1023; i++){ 

            PWM_SetDuty(i); 

            __delay_ms(2); 

        } 

    } 

} 

 

  



5.5 DESARROLLO DE APLICACIONES. 
 

 

El módulo CCP (Capture/Compare/PWM) es un periférico presente en muchas familias de 

PIC que combina tres funcionalidades: captura (medir el tiempo de eventos), comparación 

(activar eventos cuando el contador coincide con un valor) y generación PWM (control de 

ciclo de trabajo). Es esencial para aplicaciones de control de motores, generación de señales 

para servos, lectura de sensores por tiempo de pulso, y sincronización de eventos. 

El CCP es un bloque hardware integrado que usa temporizadores del microcontrolador 

(TMR1, TMR2, etc.) para ofrecer medición y control a alta resolución sin carga intensa del 

CPU. En PICs clásicos (ej. PIC16F877A) suele haber CCP1 y CCP2, cada uno con registros 

de 16 bits (CCPRxH:CCPRxL) y un registro de control CCPxCON. Microchip+1 

 

MODOS DE OPERACIÓN (CONCEPTO Y USO) 

 

Capture (Captura) 

• Mide el valor del/los temporizador(es) cuando detecta un flanco (subida/bajada) en 

la entrada CCPx. 

• Útil para medir períodos, ancho de pulso, frecuencia, tiempo entre eventos (por 

ejemplo, medición con sensor ultrasónico, encoder). 

• Normalmente usa TMR1 (16-bit) para obtener alta resolución.  

Compare (Comparador) 

• Compara el contenido del registro de comparación (CCPRx) con un temporizador (ej. 

TMR1). Cuando hay coincidencia, puede: cambiar el pin CCPx, generar interrupción, 

reiniciar TMRx o generar un “special event trigger”. 

• Se usa para generar eventos temporales precisos o para sincronizar acciones.  

https://ww1.microchip.com/downloads/en/devicedoc/39582b.pdf?utm_source=chatgpt.com


PWM (Pulse Width Modulation) 

• Genera una señal PWM en el pin CCPx, donde la frecuencia se define por PR2 y 

TMR2, y el ciclo de trabajo por CCPR1L + bits LSB en CCP1CON. 

• Muy usado en control de velocidad de motores DC, control de brillo LED y control 

de servomotores (posicionamiento).  

 

APLICACIONES PRÁCTICAS CON DETALLE (CASO DE USO Y 

VARIABLES CRÍTICAS) 

 

CONTROL DE VELOCIDAD DE MOTORES DC Y MOTORES 

BRUSHLESS (BLDC) 

 

El CCP permite generar señales PWM con variación del ciclo de trabajo (duty cycle), lo cual 

permite: 

• Ajustar la velocidad del motor. 

• Controlar el par. 

• Implementar estrategias como arranque suave (soft-start). 

• Reducir consumo energético. 

FUNCIOMAMIENTO  

• El CCP configura un temporizador (generalmente Timer2). 

• El PWM genera pulsos con frecuencia fija. 

• El microcontrolador ajusta el duty cycle según la retroalimentación recibida (sensor 

Hall, encoder, potenciómetro, etc.). 

EJEMPLO  



CONTROL DE CINTA TRANSPORTADORA EN PROCESOS DE MANUFACTURA 

 

El PIC mide el error de velocidad y ajusta el PWM para mantener constante la velocidad del 

motor sin importar la carga. 

 

SERVOCONTROL Y ROBÓTICA 

 

Los servomotores requieren pulsos periódicos entre 1 ms y 2 ms, repetidos cada 20 ms. 

CÓMO SE USA EL CCP 

• Se configura en modo PWM o Compare. 

• Se ajustan los pulsos para generar la posición del servo. 

• El CCP garantiza estabilidad temporal, necesaria para movimiento preciso. 

EJEMPLO  

BRAZO ROBÓTICO EDUCACIONAL O INDUSTRIAL 

 

El PIC usa varios módulos CCP para controlar simultáneamente diferentes servos (hombro, 

codo, muñeca). 



 

 

MEDICIÓN DE VELOCIDAD MEDIANTE SENSORES DE EFECTO HALL O 

ENCODERS 

MODO CAPTURE 

Permite medir fenómenos basados en tiempos extremadamente cortos. 

FUNCIONAMIENTO TÉCNICO 

• El CCP detecta flancos ascendentes/descendentes. 

• Captura el valor del temporizador asociado. 

• Calcula la frecuencia o periodo entre pulsos. 

EJEMPLO  

ODÓMETRO DIGITAL PARA ROBOT MÓVIL 

 

El CCP mide los pulsos del encoder y calcula distancia y velocidad del robot. 

 



SISTEMA DE ULTRASONIDO (MEDICIÓN DE DISTANCIA) 

Usado en robots minisumo, robots móviles y domótica. 

CÓMO USA CCP 

• Modo Compare para generar el “trigger” de 10 µs. 

• Modo Capture para medir el tiempo de eco. 

• Convertir tiempo → distancia usando la velocidad del sonido. 

EJEMPLO  

SISTEMA ANTI-COLISIÓN O DETECTOR DE OBSTÁCULOS 

 

El CCP permite capturar tiempos del eco con precisión de microsegundos, imprescindible 

para una lectura confiable. 

 

 

SINCRONIZACIÓN EN INVERSORES, CONTROL DE POTENCIA Y DRIVERS 

MOSFET 

Aplicación avanzada en electrónica de potencia. 

MODO UTILIZADO: PWM 

• El CCP genera señales PWM complementarias. 

• Controla compuertas de MOSFET o IGBT. 

• Se aplica dead-time (tiempo muerto). 



EJEMPLO  

CONTROLADOR DE CARGA PARA PANEL SOLAR (BUCK/BOOST) 

 

El CCP regula la energía entregada a la batería variando el duty cycle. 

 

CONTROL DE TEMPERATURA MEDIANTE CONTROL PID 

Aunque el PID se ejecuta por software, el CCP es fundamental para: 

• Accionar resistencias calefactoras por PWM. 

• Regular ventiladores. 

• Dosificar potencia. 

EJEMPLO  

INCUBADORA DE LABORATORIO O CÁMARA TÉRMICA INDUSTRIAL 

 

El CCP ajusta el PWM para mantener constante la temperatura según el sensor (termistor, 

PT100, etc.) 

 

DIMMERS PARA ILUMINACIÓN LED Y AHORRO DE ENERGÍA 

El CCP genera PWM para controlar la luminosidad. 



VENTAJAS TÉCNICAS 

• Ausencia de parpadeo. 

• Eficiencia energética. 

• Control fino del brillo. 

EJEMPLO  

SISTEMA DE ILUMINACIÓN INTELIGENTE O AUTOMATIZADA 

 

Permite regular el nivel de luz de un cuarto mediante sensores o control remoto. 

 

CONTROL DE VÁLVULAS PROPORCIONALES Y ACTUADORES INDUSTRIALES 

Las válvulas proporcionales funcionan con señales PWM o señales equivalentes a analógicas. 

MODO USADO: PWM 

• Ajusta el flujo del fluido. 

• Controla presión o caudal. 

• Requiere precisión en frecuencia y duty cycle → CCP. 

EJEMPLO  

SISTEMA NEUMÁTICO PROPORCIONAL EN MÁQUINAS CNC 

 

El CCP regula la entrada de aire para controlar fuerza o posición de pistones. 



 

 

 

COMUNICACIÓN POR MODULACIÓN (FSK, ASK, IR, PWM SERIAL) 

Algunos protocolos de comunicación simple usan modulación por variación de ancho de 

pulso. 

MODO DEL CCP 

• PWM genera la portadora. 

• Compare regula tiempos de encendido/apagado. 

• Capture mide tiempos en el receptor. 

EJEMPLO  

CONTROL REMOTO INFRARROJO COMPATIBLE CON NEC O RC5 

 

El CCP permite medir la duración de los pulsos para decodificar la trama recibida. 

 

MEDICIÓN DE FRECUENCIA Y PERIODO DE SEÑALES EXTERNAS 

Aplicación esencial para instrumentación electrónica. 

MODO CAPTURE 

• Detecta flancos a intervalos precisos. 



• Mide periodo → calcula frecuencia. 

EJEMPLO  

TACÓMETRO DIGITAL 

 

El CCP captura el tiempo entre pulsos para calcular la velocidad de un eje rotativo. 

 

GENERACIÓN DE SEÑALES DE RELOJ O TRENES DE PULSOS 

Se utiliza para sincronizar: 

• Módulos externos. 

• Etapas digitales. 

• Muestras de ADC. 

MODO COMPARE 

• Genera interrupciones periódicas. 

• Crea pulsos a frecuencias definidas por el usuario. 

EJEMPLO  

GENERADOR DE RELOJ PARA UN MÓDULO DE COMUNICACIÓN 



 

El CCP puede generar un pulso constante para sincronizar un módulo UART externo. 

 

APLICACIONES BIOMÉDICAS (OXÍMETROS, SENSORES DE FLUJO, MOTORES 

PERISTÁLTICOS) 

Los equipos biomédicos utilizan el CCP de múltiples maneras: 

PWM PARA MOTORES PERISTÁLTICOS 

Controlan el flujo de sangre o medicamentos. 

CAPTURE PARA MEDIR SEÑALES PWM DE SENSORES 

Por ejemplo, en oxímetros que modulan su salida. 

EJEMPLO  

BOMBA DE INFUSIÓN MÉDICA 

 

El CCP regula la velocidad del motor para dosificar líquido con alta precisión. 

 

CONTROL DE AUDIO Y GENERACIÓN DE TONOS 

Los PIC pueden generar tonos mediante PWM filtrado. 

APLICACIÓN 

• Timbres digitales. 

• Alarmas sonoras. 



• Música en proyectos educativos. 

 

IMPRESIÓN 3D Y CNC (DRIVERS DE MOTORES PASO A PASO) 

El CCP no controla directamente el motor paso a paso, pero sí: 

• Genera pulsos STEP en modo Compare. 

• Regula la aceleración con PWM. 

• Controla ventiladores, cama caliente y extrusor por PWM. 

EJEMPLO  

CONTROLADOR DE EXTRUSOR 

 

El CCP genera PWM para calentar y mantiene una temperatura estable. 

 

 

 

SISTEMAS AUTOMOTRICES 

Muchos módulos de autos funcionan mediante señales que el CCP puede captar o generar. 

EJEMPLOS 



• Medición del sensor de cigüeñal (modo Capture). 

• Control de inyectores (modo Compare). 

• Control de ventiladores (modo PWM). 

• Modulación de luces LED. 

 

  



CONCLUSIÓN 
 

El análisis integral del módulo CCP permite concluir que este periférico es la piedra angular 

para el control de tiempo real en la familia de microcontroladores PIC. A través del estudio 

de los temas 5.1 al 5.5, se ha demostrado que la versatilidad del módulo radica en su 

arquitectura de "hardware compartido", donde un mismo conjunto de registros físicos 

(CCPRxL, CCPRxH) cambia su función drásticamente según la configuración de los bits de 

control. 

Se ha evidenciado que el éxito en la programación del módulo depende estricta y 

directamente del dominio de los temporizadores: el Timer1 (o Timer3) es indispensable para 

la precisión en los modos de Captura y Comparación , mientras que el Timer2 dicta la 

frecuencia operativa en el modo PWM. Más allá de la teoría de registros, la investigación 

valida que la implementación de estos modos (5.2, 5.3, 5.4) habilita el desarrollo de 

aplicaciones robustas (5.5), tales como la lectura de sensores infrarrojos, la generación de 

señales analógicas vía DAC-PWM o el control de velocidad en motores DC. En definitiva, 

el módulo CCP transforma al microcontrolador de un simple procesador lógico a un 

controlador dinámico capaz de interactuar con el mundo analógico y temporal con alta 

precisión y baja latencia de software.    
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INTRODUCCIÓN 
 

En la industria moderna, el monitoreo y control de la temperatura es un factor crítico en 

numerosos procesos como la manufactura, la industria alimentaria, sistemas de calefacción, 

refrigeración y control ambiental. Un pequeño error en la medición térmica puede ocasionar 

daños en equipos, pérdida de materiales o incluso accidentes. 

Con el avance de la electrónica embebida, es posible desarrollar sistemas de monitoreo más 

eficientes utilizando microcontroladores de alto rendimiento como el ESP32, el cual integra 

conectividad inalámbrica, gran capacidad de procesamiento y múltiples protocolos de 

comunicación. 

En esta práctica se desarrolló un sistema de monitoreo y control de temperatura utilizando 

un sensor MAX6675 con termopar tipo K, el cual permite medir temperaturas elevadas con 

buena precisión mediante el protocolo SPI. Los datos obtenidos son enviados por Bluetooth, 

permitiendo su visualización remota, y además se implementa el control de un actuador en 

función de la temperatura registrada. 

Este sistema simula aplicaciones reales en entornos industriales automatizados, donde la 

supervisión de variables físicas y el control en tiempo real son indispensables. 

  



OBJETIVO 
 

 

Diseñar e implementar un sistema de monitoreo y control de temperatura utilizando un 

ESP32, un sensor MAX6675 (SPI) y comunicación Bluetooth, capaz de: 

• Medir la temperatura mediante un termopar tipo K. 

• Enviar la temperatura en tiempo real por Bluetooth. 

• Generar alarmas cuando la temperatura sea mayor a 50°C o menor a 10°C. 

• Controlar un actuador conectado al pin GPIO 2 en modo: 

o Manual 

o Automático 

o Desactivado 

• Simular un sistema de control térmico industrial. 

  



MATERIALES Y HERRAMIENTAS 
 

 

Materiales  

• 1 ESP32 

• 1 Módulo sensor MAX6675 

• 1 Termopar tipo K 

• 1 Relé / LED / Válvula / Solenoide (Actuador) 

• 1 Protoboard 

• Cables Dupont macho-macho y macho-hembra 

• Fuente de alimentación 5V/USB 

• PC con cable USB 

  



 

 

 

 

 



  



 

 

 

 

 



 

  



DATOS DE LOS COMPONENTES 

PRINCIPALES 
 

 

ESP32 
 

CARACTERÍSTICA VALOR 

Voltaje de operación 3.3 V 

Microcontrolador Xtensa LX6 dual-core 

Frecuencia Hasta 240 MHz 

Comunicación WiFi y Bluetooth integrados 

GPIO +30 pines configurables 

Protocolo SPI Sí 

UART Sí 

ADC/DAC Sí 

 

 

 

 

 

 

 

 

 

 

 

 FIGURA 1ESP32 



 

SENSOR MAX6675 + TERMOPAR TIPO K 

 

 

PIN FUNCIÓN ESP32 

VCC Alimentación 3.3V 

GND Tierra GND 

SO Data output GPIO 19 

CS Chip Select GPIO 5 

SCK Clock GPIO 18 

  

FIGURA 2 TERMOPAR K CON MÓDULO MAX6675 



DESCRIPCIÓN FUNCIONAL DEL 

CIRCUITO 
 

 

El sistema se compone de tres bloques principales: 

BLOQUE DE ADQUISICIÓN DE TEMPERATURA 

o El termopar tipo K mide la temperatura. 

o El MAX6675 convierte la señal del termopar a un dato digital. 

o El ESP32 lee ese dato mediante el protocolo SPI. 

 

BLOQUE DE COMUNICACIÓN 

o El ESP32 transmite los datos de temperatura vía Bluetooth. 

o Se envían cadenas como: 

*T25.50* 

o Cuando hay alarma: 

*AV100* 

*LR255G0B0* 

*GR0G150B255* 

 

BLOQUE DE CONTROL 

o Un actuador está conectado al GPIO 2. 

o Puede activarse: 

▪ Manualmente (M) 

▪ Automáticamente (>40°C) 

▪ Desactivado (N) 

  



DESCRIPCIÓN DEL PROCEDIMIENTO 
 

 

Se conectó el módulo MAX6675 al ESP32 mediante SPI: 

o SO → GPIO19 

o CS → GPIO5 

o SCK → GPIO18 

o VCC → 3.3V 

o GND → GND 

Se conectó el actuador (relé / LED) al GPIO 2. 

En el Arduino IDE: 

o Se configuró el ESP32. 

o Se cargó el código. 

o Se abrió el monitor serial. 

Se emparejó un teléfono con el dispositivo Bluetooth: 

o Nombre: MONITOREO DE TEMPERATURA 

Se visualizaron las lecturas de temperatura y se probaron comandos: 

o M → Modo manual 

o A → Modo automático 

o N → Desactivar 

Se probaron temperaturas altas y bajas para verificar las alarmas. 

  



CÓDIGO UTILIZADO (SPI.h) 
 
#include <BluetoothSerial.h> 
#include <SPI.h> 
 
// Pines para MAX6675 (SPI) 
const int SO_PIN = 19;   // MISO 
const int CS_PIN = 5;    // Chip Select 
const int SCK_PIN = 18;  // SCK 
 
// Pin para el actuador 
const int ACTUADOR_PIN = 2; 
 
// Objeto Bluetooth 
BluetoothSerial SerialBT; 
 
// Variables de control 
float temperatura = 0.0; 
unsigned long lastReadTime = 0; 
unsigned long lastAlarmaSend = 0; 
unsigned long lastFrioSend = 0; 
 
// Variables para el actuador 
char modoActuador = 'N'; // 'N'=Ninguno, 'M'=Manual, 
'A'=Automático 
bool estadoActuador = false; 
 
const unsigned long readInterval = 1000;     // Lectura cada 1 
segundo 
const unsigned long alarmaInterval = 500;    // Envío alarma cada 
500ms 
const unsigned long frioInterval = 500;      // Envío frío cada 
500ms 
 
void setup() { 
  Serial.begin(115200); 
   
  // Configurar pines del MAX6675 (SPI) 
  pinMode(CS_PIN, OUTPUT); 
  pinMode(SO_PIN, INPUT); 
  pinMode(SCK_PIN, OUTPUT); 
  digitalWrite(CS_PIN, HIGH); 
  digitalWrite(SCK_PIN, LOW); 
   



  // Configurar pin del actuador 
  pinMode(ACTUADOR_PIN, OUTPUT); 
  digitalWrite(ACTUADOR_PIN, LOW); 
   
  // Inicializar Bluetooth 
  if (!SerialBT.begin("MONITOREO DE TEMPERATURA")) { 
    Serial.println("Error al inicializar Bluetooth"); 
  } else { 
    Serial.println("Bluetooth inicializado: MONITOREO DE 
TEMPERATURA"); 
  } 
   
  Serial.println("Sistema de temperatura listo (SPI)"); 
  Serial.println("Comandos: M=Manual, A=Automático, N=Ninguno"); 
} 
 
void loop() { 
  unsigned long currentTime = millis(); 
   
  // Leer temperatura cada intervalo 
  if (currentTime - lastReadTime >= readInterval) { 
    temperatura = leerTemperaturaSPI(); 
    lastReadTime = currentTime; 
     
    if (temperatura == -999.0) { 
      Serial.println("Error leyendo sensor"); 
    } else { 
      Serial.print("Temperatura: "); 
      Serial.print(temperatura); 
      Serial.println(" °C"); 
      enviarTemperaturaBasica(); 
    } 
  } 
   
  // Controlar alarmas y actuador 
  controlarAlarmas(currentTime); 
  controlarActuador(); 
  verificarComandosBluetooth(); 
} 
 
float leerTemperaturaSPI() { 
  uint16_t valor = 0; 
   
  digitalWrite(CS_PIN, LOW); 
  delayMicroseconds(10); 
   



  // Leer 16 bits via SPI 
  for (int i = 15; i >= 0; i--) { 
    digitalWrite(SCK_PIN, HIGH); 
    delayMicroseconds(10); 
     
    if (digitalRead(SO_PIN)) { 
      valor |= (1 << i); 
    } 
     
    digitalWrite(SCK_PIN, LOW); 
    delayMicroseconds(10); 
  } 
   
  digitalWrite(CS_PIN, HIGH); 
   
  // Verificar sensor conectado 
  if (valor & 0x04) { 
    Serial.println("Error: Sensor no conectado"); 
    return -999.0; 
  } 
   
  // Convertir a temperatura 
  valor >>= 3; 
  return valor * 0.25; 
} 
 
 

  



EXPLICACIÓN DEL CÓDIGO 
 

El código desarrollado para este proyecto cumple con la función de medir, procesar, 
comunicar y controlar la temperatura en tiempo real, utilizando el microcontrolador ESP32, 
el sensor MAX6675 mediante protocolo SPI, la comunicación Bluetooth y un actuador 
conectado a un pin digital. 

El programa se encuentra estructurado en diferentes secciones, las cuales se explican a 
continuación: 

INCLUSIÓN DE LIBRERÍAS 

#include <BluetoothSerial.h> 

#include <SPI.h> 

• La librería BluetoothSerial.h permite establecer una comunicación inalámbrica 

utilizando el módulo Bluetooth interno del ESP32. 

• La librería SPI.h permite manejar la comunicación mediante el protocolo SPI entre el 

ESP32 y el sensor MAX6675. 

Estas librerías son indispensables para el funcionamiento de la lectura de datos del sensor y 

la transmisión inalámbrica. 

 

DECLARACIÓN DE PINES 

// Pines para MAX6675 (SPI) 
const int SO_PIN = 19;   // MISO 
const int CS_PIN = 5;    // Chip Select 
const int SCK_PIN = 18;  // SCK 
 
// Pin para el actuador 
const int ACTUADOR_PIN = 2; 
 
 

• SO_PIN (19): Pin de salida de datos del MAX6675 (MISO). 

• CS_PIN (5): Pin de selección del dispositivo (Chip Select). 

• SCK_PIN (18): Pin del reloj de comunicación SPI. 

• ACTUADOR_PIN (2): Pin asignado para el control del actuador (LED, relé, válvula 

o solenoide). 



Estos pines pueden cambiarse, siempre y cuando el nuevo pin sea compatible con el protocolo 

SPI y entradas/salidas digitales del ESP32. 

VARIABLES PRINCIPALES 

 

 
// Objeto Bluetooth 
BluetoothSerial SerialBT; 
 
// Variables de control 
float temperatura = 0.0; 
unsigned long lastReadTime = 0; 
unsigned long lastAlarmaSend = 0; 
unsigned long lastFrioSend = 0; 
 
// Variables para el actuador 
char modoActuador = 'N'; // 'N'=Ninguno, 'M'=Manual, 
'A'=Automático 
bool estadoActuador = false; 
 
const unsigned long readInterval = 1000;     // Lectura cada 1 
segundo 
const unsigned long alarmaInterval = 500;    // Envío alarma cada 
500ms 
const unsigned long frioInterval = 500;      // Envío frío cada 
500ms 
 
 

• temperatura: almacena el valor obtenido del sensor en grados Celsius. 

• modoActuador: indica el modo de trabajo del actuador: 

o 'M' → Manual 

o 'A' → Automático 

o 'N' → Desactivado 

• estadoActuador: indica si el actuador está activo (true) o inactivo (false). 

• lastReadTime: guarda el momento de la última lectura para no saturar el sistema. 

• READ_INTERVAL: define que la lectura se realizará cada 1000 ms (1 segundo). 

Esto permite un funcionamiento estable y ordenado del sistema. 

 



FUNCIÓN SETUP() 

 

 
void setup() { 
  Serial.begin(115200); 
   
  // Configurar pines del MAX6675 (SPI) 
  pinMode(CS_PIN, OUTPUT); 
  pinMode(SO_PIN, INPUT); 
  pinMode(SCK_PIN, OUTPUT); 
  digitalWrite(CS_PIN, HIGH); 
  digitalWrite(SCK_PIN, LOW); 
   
  // Configurar pin del actuador 
  pinMode(ACTUADOR_PIN, OUTPUT); 
  digitalWrite(ACTUADOR_PIN, LOW); 
   
  // Inicializar Bluetooth 
  if (!SerialBT.begin("MONITOREO DE TEMPERATURA")) { 
    Serial.println("Error al inicializar Bluetooth"); 
  } else { 
    Serial.println("Bluetooth inicializado: MONITOREO DE 
TEMPERATURA"); 
  } 
   
  Serial.println("Sistema de temperatura listo (SPI)"); 
  Serial.println("Comandos: M=Manual, A=Automático, N=Ninguno"); 
} 
 
 

Durante el setup() se realiza: 

1. Inicialización de la comunicación serial a 115200 baudios para monitoreo en la 

computadora. 

2. Configuración de los pines del MAX6675 y del actuador. 

3. Establecimiento de estados iniciales: 

o CS en HIGH (sensor inactivo). 

o SCK en LOW (sin señal de reloj). 



o Actuador apagado. 

4. Inicio del Bluetooth con el nombre "MONITOREO DE TEMPERATURA", 

permitiendo que un dispositivo móvil se conecte. 

FUNCIÓN LOOP() 

 

 
void loop() { 
  unsigned long currentTime = millis(); 
   
  // Leer temperatura cada intervalo 
  if (currentTime - lastReadTime >= readInterval) { 
    temperatura = leerTemperaturaSPI(); 
    lastReadTime = currentTime; 
     
    if (temperatura == -999.0) { 
      Serial.println("Error leyendo sensor"); 
    } else { 
      Serial.print("Temperatura: "); 
      Serial.print(temperatura); 
      Serial.println(" °C"); 
      enviarTemperaturaBasica(); 
    } 
  } 
   
  // Controlar alarmas y actuador 
  controlarAlarmas(currentTime); 
  controlarActuador(); 
  verificarComandosBluetooth(); 
} 
 
 
 

Esta función se ejecuta continuamente y hace lo siguiente: 

• Cada segundo: 

o Lee la temperatura del sensor. 

o Si la lectura es válida, la envía por Bluetooth en un formato especial: 

*T25.50* 



• Verifica si hay comandos recibidos por Bluetooth. 

• Controla el estado del actuador según el modo seleccionado. 

Esto crea un sistema en tiempo real. 

 

FUNCIÓN LEERTEMPERATURASPI() (NÚCLEO DEL SISTEMA) 

 

Esta función es la más importante, ya que se encarga de leer los datos del MAX6675 mediante 

SPI. 

 

 
float leerTemperaturaSPI() { 
  uint16_t valor = 0; 
   
  digitalWrite(CS_PIN, LOW); 
  delayMicroseconds(10); 
  // Leer 16 bits via SPI 
  for (int i = 15; i >= 0; i--) { 
    digitalWrite(SCK_PIN, HIGH); 
    delayMicroseconds(10); 
     
    if (digitalRead(SO_PIN)) { 
      valor |= (1 << i); 
    } 
     
    digitalWrite(SCK_PIN, LOW); 
    delayMicroseconds(10); 
  } 
   
  digitalWrite(CS_PIN, HIGH); 
   
  // Verificar sensor conectado 
  if (valor & 0x04) { 
    Serial.println("Error: Sensor no conectado"); 
    return -999.0; 
  } 
   
  // Convertir a temperatura 
  valor >>= 3; 



  return valor * 0.25; 
} 
 

 

 

 

 

1. Se baja el pin CS para iniciar comunicación con el MAX6675. 

2. Se leen 16 bits de datos usando un ciclo for. 

3. Cada bit se obtiene leyendo el pin SO cuando el reloj está en HIGH. 

4. Se verifica el bit de error (sensor desconectado). 

5. Se recorre el valor 3 bits a la derecha (>>= 3). 

6. El valor final se multiplica por 0.25, que es la resolución del MAX6675. 

7. Se obtiene la temperatura en grados Celsius. 

Si ocurre un error, la función regresa -999.0, lo que le indica al sistema que hay un fallo en 

el sensor. 

 

 

CONTROL DEL ACTUADOR 

El control se basa en tres modos: 

• Manual (M): El actuador permanece encendido. 

• Automático (A): Se enciende cuando la temperatura es ≥ 40 °C. 

• Ninguno (N): El actuador permanece apagado. 

Esto permite simular un sistema de control térmico como el de un ventilador, resistencia o 

válvula. 

  



ENSAMBLADO DEL SISTEMA 

 

 

El ensamblado físico del circuito se realizó utilizando una protoboard para facilitar la 

conexión y modificación de los componentes. 

 

ORGANIZACIÓN FÍSICA DE LOS ELEMENTOS 

• El ESP32 se colocó al centro de la protoboard. 

• El módulo MAX6675 se ubicó en un extremo para mayor accesibilidad. 

• El actuador se colocó en una zona independiente, conectándolo al GPIO2. 

• El termopar tipo K se conectó directamente al módulo MAX6675 mediante los 

tornillos del módulo. 

Esto permitió un montaje organizado, limpio y seguro. 

 

 

CONEXIONES ELÉCTRICAS REALIZADAS 

 

MAX6675 ESP32 

VCC 3.3 V 

GND GND 

SO GPIO 19 

CS GPIO 5 

SCK GPIO 18 

 



 

 

 

 

 

El actuador fue conectado: 

 

Actuador ESP32 

Señal GPIO 2 

GND GND 

VCC 5V / 3.3V (dependiendo del 
actuador) 

 

 

CODIFICACIÓN DE COLORES DE LOS CABLES 

Para evitar errores en el armado del circuito, se utilizaron colores específicos: 

  Rojo → Alimentación (VCC) 

   Negro → Tierra (GND) 

  Amarillo → Señales SPI (SCK) 

  Azul → Señales SPI (SO) 

  Verde → Chip Select (CS) 

   Blanco → Señal del actuador 

La organización visual facilitó la detección de fallas. 

 



PRUEBA DEL ENSAMBLADO 

Antes de energizar el sistema, se verificó: 

• Continuidad de las conexiones 

 

• Ausencia de cortocircuitos 

 

• Polaridad correcta 

 

• Correcta conexión del termopar 

 

• Integridad de los pines SPI 

Después de la verificación, se conectó el ESP32 al puerto USB y se observaron los siguientes 

resultados: 

1. Se mostró la temperatura en el monitor serial. 

2. Se detectó el nombre Bluetooth en el celular. 

3. Se enviaron cadenas correctamente. 

4. El actuador respondió a los comandos M, A y N. 

5. Las alarmas se activaron según los límites establecidos. 

  



RESULTADO DEL ENSAMBLAJE 
 

Una vez concluido el armado físico del sistema de monitoreo y control de temperatura, se 

realizaron varias pruebas funcionales con el objetivo de comprobar el correcto desempeño 

de cada uno de los componentes y la comunicación entre ellos. El ensamblaje final estuvo 

compuesto por el microcontrolador ESP32, el módulo convertidor de temperatura MAX6675 

con su respectivo termopar tipo K, un actuador de salida (LED/motor/relé), y un dispositivo 

móvil con conexión Bluetooth para el monitoreo remoto de los datos. 

En la primera etapa de pruebas, se verificó la alimentación del sistema mediante la 

conexión del ESP32 a una fuente de 5 V por USB. Al encender el módulo, el LED de 

alimentación integrado en la tarjeta se iluminó correctamente, lo que confirmó que la placa 

recibía energía de manera adecuada. Posteriormente, se utilizó el monitor serial del entorno 

Arduino IDE para comprobar que el programa cargado iniciara correctamente, observándose 

en pantalla los mensajes: “Bluetooth inicializado: MONITOREO DE TEMPERATURA” y 

“Sistema de temperatura listo (SPI)”, lo que indicó que tanto el microcontrolador como la 

comunicación Bluetooth estaban correctamente configurados. 

En la segunda etapa, se comprobó la comunicación entre el ESP32 y el sensor MAX6675 

empleando el protocolo SPI. El termopar fue expuesto a distintas condiciones térmicas, como 

temperatura ambiente, contacto directo con la mano y aproximación a una fuente de calor 

moderada. Al observar los valores en el monitor serial, se notó un incremento gradual y 

coherente de la temperatura, pasando de aproximadamente 28 °C (ambiente) hasta valores 

cercanos a 35–40 °C al aplicar calor, lo que evidenció que el sensor estaba midiendo 

correctamente y que no existían errores de conexión entre los pines SO (MISO), CS y SCK. 

También se comprobó la detección de error del sensor: al desconectar temporalmente el 

termopar del módulo MAX6675, el sistema mostró en pantalla el mensaje: “Error: Sensor 

no conectado”, devolviendo el valor de -999.0. Esto confirmó el correcto funcionamiento 

del mecanismo de verificación y protección ante fallos del sensor, lo que aumenta la 

confiabilidad del sistema. 



En la tercera etapa, se evaluó el funcionamiento del actuador conectado al pin digital 2 del 

ESP32. En modo manual, a través del envío de comandos por Bluetooth (por ejemplo, la letra 

“M”), el actuador respondió de manera inmediata, cambiando su estado entre encendido y 

apagado. Esto permitió comprobar que el ESP32 recibía correctamente datos desde el 

dispositivo móvil y que podía accionar una salida física según la orden recibida. En modo 

automático (“A”), el actuador se activó o desactivó en función de la temperatura medida, 

demostrando la integración efectiva del sistema de control con la variable de proceso. 

Adicionalmente, se verificó la estabilidad del sistema en funcionamiento continuo durante 

un periodo aproximado de 20 minutos. Durante este lapso no se presentaron reinicios 

inesperados, lecturas erráticas ni fallas en la comunicación, lo que indica que el ensamblaje 

físico fue adecuado y que las conexiones fueron firmes y correctas. La información de 

temperatura fue enviada de manera constante cada segundo vía Bluetooth, cumpliendo con 

el intervalo definido en el código (readInterval = 1000 ms). 

Finalmente, el montaje resultó ser compacto, funcional y fácil de manipular. Las conexiones 

realizadas con cables Dupont mantuvieron un buen contacto durante toda la prueba, y el uso 

de una protoboard facilitó la organización de los componentes. El sistema ensamblado 

demostró ser una solución eficiente para el monitoreo y control de temperatura en tiempo 

real, confirmando que la integración entre hardware y software fue exitosa y que cumple con 

los objetivos propuestos en la práctica. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

  



 

 

 



VÍDEO FUNCIONANDO 

 

https://youtu.be/Leork0kJua0 

  

https://youtu.be/Leork0kJua0


CONCLUSIÓN 
 

En la presente práctica se diseñó e implementó un sistema de monitoreo y control de 

temperatura utilizando el microcontrolador ESP32 en conjunto con el sensor MAX6675 y un 

termopar tipo K, logrando medir, procesar y transmitir información térmica en tiempo real 

mediante comunicación Bluetooth. El sistema demostró un funcionamiento estable y 

continuo, permitiendo la visualización de la temperatura y la generación automática de 

alertas cuando se alcanzaban valores críticos, lo que evidencia su utilidad en aplicaciones 

de supervisión térmica. 

Asimismo, se implementó el control de un actuador, el cual pudo ser manipulado de manera 

manual o automática dependiendo de la temperatura detectada, simulando un proceso de 

control industrial básico. Esta característica permitió comprender de manera práctica el uso 

de algoritmos de control, la toma de decisiones basada en sensores y la automatización de 

procesos. 

Durante el desarrollo de esta práctica se reforzaron conocimientos importantes relacionados 

con la programación de microcontroladores, el protocolo de comunicación SPI, la 

transmisión inalámbrica vía Bluetooth y la integración de sensores y actuadores dentro de 

un sistema embebido. Además, se fortalecieron habilidades como la interpretación de 

diagramas, el armado de circuitos en protoboard, la depuración de código y la verificación 

del funcionamiento de cada componente. 

Finalmente, este proyecto demuestra que es posible desarrollar sistemas eficientes, precisos 

y de bajo costo para el monitoreo y control de temperatura, los cuales pueden aplicarse en 

ámbitos industriales, educativos y domésticos, representando una base sólida para la 

implementación de proyectos más complejos en el área de automatización y control. 
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Nombre del estudiante: QUINO CAIXBA PERLA JOSELIN. 

Tema: PROGRAMACIÓN DE PERIFÉRICOS DEL MICROCONTROLADOR. 

Portada        2 % 2 % 

Introducción        5 % 5 % 

Desarrollo        10 % 10 % 

Conclusiones        5 % 5% 

Referencias         3 % 3 % 

Entrega en tiempo y forma      5 % 5 % 
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