W

ITSSAT

INSTITUTO TECNOLOGICO SUPERIOR
DE SAN ANDRESTUXTLA

INVESTIGACION DOCUMENTAL Ul
“APLICACIONES REALES
DE LA INSTRUMENTACION VIRTUAL”

CARRERA
INGENIERIA MECATRONICA

PRESENTA
FRANCISCO EDUARDO AZAMAR
GRUPO:

911-A

CATEDRATICO
DR. JOSE ANGEL NIEVES VASQUEZ

ASIGNATURA:
INSTRUMENTACION VIRTUAL

SAN ANDRES TUXTLA VER, A 06 DE OCTUBRE DEL 2025

Introduccion

En la actualidad, la instrumentacion virtual representa una de las herramientas mas
importantes dentro del campo de la Ingenieria Mecatronica, ya que permite integrar la
medicién, el control y la automatizacion de procesos mediante el uso del software y el
hardware programable. A diferencia de los instrumentos tradicionales, los instrumentos
virtuales ofrecen la capacidad de disefiar, simular y ejecutar funciones de adquisicion y
analisis de datos a traves de entornos de programacion flexibles, tales como LabVIEW,
MATLAB o Python, lo que reduce costos, optimiza recursos y mejora la precision en la toma
de decisiones técnicas.

El bloque “Instrumentos Virtuales” tiene como objetivo comprender los principios de
programacion y manejo de datos aplicados a la instrumentacion. A lo largo de los subtemas
se estudian los ambientes de programacion y las estructuras fundamentales, tales como
funciones, subrutinas, ciclos y temporizacion, que son indispensables para el desarrollo
I6gico de los programas.
Ademas, se profundiza en el uso de arreglos, grupos de datos, cadenas y archivos de
entrada/salida, los cuales permiten organizar, almacenar y comunicar la informacién
generada por los sistemas de medicion. Finalmente, se integran estos conceptos en ejemplos
précticos con software especializado, demostrando su aplicabilidad en entornos reales de
monitoreo y control.

En conjunto, estos conocimientos brindan al estudiante una base sélida para disefiar

soluciones de instrumentacién modernas, eficientes y escalables, capaces de adaptarse a los
requisitos actuales de la industria 4.0 y de los sistemas inteligentes de fabricacion.

Instrumentos Virtuales.

La rapida adopcion de la PC en los ultimos 20 afios catalizd una revoluciéon en la
instrumentacién para pruebas, medicién y automatizacion. Un desarrollo importante
derivado de la ubicuidad de la PC es el concepto de instrumentacién virtual, que ofrece
diversas ventajas a ingenieros y cientificos que requieren mayor productividad, precisién y
rendimiento.

Un instrumento virtual consiste en una computadora o estacién de trabajo estandar de la
industria equipada con un potente software de aplicacion, hardware rentable, como placas de
conexion, y software de controlador, que en conjunto realizan las funciones de los
instrumentos tradicionales. Los instrumentos virtuales representan una transicion
fundamental de los sistemas de instrumentacion tradicionales centrados en hardware a
sistemas centrados en software que aprovechan la potencia de procesamiento, la
productividad, la visualizacion y las capacidades de conectividad de las computadoras de
escritorio y estaciones de trabajo mas populares. Si bien la PC y la tecnologia de circuitos
integrados han experimentado avances significativos en las ultimas dos décadas, es el
software el que realmente proporciona la base para construir sobre esta potente base de
hardware y crear instrumentos virtuales, lo que ofrece mejores maneras de innovar y reducir
significativamente los costos. Con instrumentos virtuales, los ingenieros y cientificos
construyen sistemas de medicion y automatizacién que se adaptan exactamente a sus
necesidades (definidos por el usuario) en lugar de estar limitados por los instrumentos
tradicionales de funcion fija (definidos por el proveedor).

2.1Ambientes de programacion

Los entornos de desarrollo pueden variar segun el lenguaje de programacion y el tipo de
aplicacion que se desea construir. Sin embargo, todos comparten algunas caracteristicas

clave:

>

Editor de cddigo: Es una de las partes mas importantes. Permite escribir y editar el
codigo fuente con funciones avanzadas como resaltado de sintaxis, autocompletado
y correccion de errores.

Compilador o intérprete: Se encarga de traducir el codigo fuente a un lenguaje que la
maquina pueda entender y ejecutar.

Depurador: Facilita la identificacion y correccion de errores en el codigo.

Herramientas de prueba: Algunos entornos incluyen opciones para realizar pruebas
automaticas y asegurar que el software funcione correctamente.

Control de versiones: Permite llevar un seguimiento de los cambios en el codigo,
facilitando el trabajo en equipo.

Tipos de entornos de desarrollo de programacion

*

Existen diferentes tipos de entornos de desarrollo segun su funcionalidad y el tipo de
programacion que soportan. A continuacion, se mencionan algunos de los mas
comunes:

Entornos de desarrollo integrados (IDE): Son plataformas completas que incluyen
todas las herramientas necesarias para programar, como Visual Studio Code, Eclipse
0 JetBrains IntelliJ IDEA.

Editores de texto avanzados: Programas como Sublime Text o Atom que, aunque no
son IDE completos, ofrecen funciones avanzadas para la escritura de codigo.
Entornos en la nube: Permiten programar sin necesidad de instalar software en la
computadora, como Replit o GitHub Codespaces.

Entornos especializados: Disefiados para lenguajes o aplicaciones especificas, como
Android Studio para desarrollo de aplicaciones moviles en Android.

Ventajas de usar un entorno de desarrollo adecuado

Trabajar con un entorno de desarrollo de programacion adecuado trae numerosos beneficios,
entre ellos:

+ Mayor productividad: Al contar con herramientas que automatizan tareas
repetitivas y facilitan la depuracion, se reduce el tiempo de desarrollo.

+ Mejor organizacion del codigo: Facilita la estructuracion de proyectos y la
colaboracion entre desarrolladores.

+ Reduccion de errores: Gracias a las funciones de correccién y depuracién, se
minimizan los errores en el cédigo.

+ Compatibilidad y escalabilidad: Algunos entornos permiten el desarrollo en
maltiples lenguajes y la integracion con otras herramientas.

¢ Como elegir el mejor entorno de desarrollo de programacion?
Para seleccionar el mejor entorno de desarrollo, es importante considerar:

El lenguaje de programacion: No todos los entornos son compatibles con todos los
lenguajes. Es clave elegir uno que se adapte al lenguaje que se va a utilizar.

La facilidad de uso: Algunos entornos son mas intuitivos que otros. Para principiantes,
puede ser recomendable optar por un IDE con una interfaz sencilla.

La compatibilidad con herramientas externas: Si se requiere integrar bases de datos,
librerias o frameworks, es importante que el entorno lo permita.

El rendimiento y la estabilidad: Un buen entorno debe ser rapido y estable para evitar
interrupciones en el desarrollo.

Los ambientes de programacién en instrumentacion virtual son plataformas que permiten
disefiar, simular y controlar sistemas de medicion o automatizacién mediante software. En
lugar de depender Unicamente de hardware fisico, se utilizan entornos graficos o textuales
para crear “instrumentos virtuales” que emula el comportamiento de equipos reales como
multimetros, osciloscopios o controladores.

Algunos ejemplos son:

LabVIEW (National Instruments): entorno grafico ampliamente utilizado en
ingenieria para crear interfaces de adquisicion de datos y control de procesos.
MATLAB/Simulink: permite la simulacién matematica y la integracion con
hardware.

Python (con librerias como PyVISA o NumPy): ideal para instrumentacién con
codigo abierto.

2.2 Funciones y subrutinas.

Las funciones y subrutinas son blogques de codigo reutilizables que facilitan la organizacion
de un programa.

En instrumentacion virtual, se usan para dividir tareas complejas en secciones mas
pequefas, como la adquisicion de datos, el procesamiento de sefiales o la visualizacion de
resultados.

Funciones: Devuelven un valor y se utilizan cuando se requiere un célculo
especifico (por ejemplo, calcular el promedio de una sefial).

Subrutinas (o subVIs en LabVIEW): ejecutan una tarea pero no necesariamente
devuelven un valor; Sirven para modularizar el codigo y hacerlo mas legible.

El uso de funciones y subrutinas mejora la eficiencia, reduce errores y permite reutilizar
cddigo en diferentes proyectos.

Subrutinas

Una subrutina es un procedimiento que ejecuta cierta accion y obtiene un resultado. Las
subrutinas pueden o no recibir parametros para su ejecucion y no devuelven un resultado.

La sint&xis para escribir una subrutina es la siguiente:

nombreSubrutina (pl As Tipo_variable, p2 As Tipo_variable, ...
cédigo que ejecuta la subrutina

Observe que la sintaxis de la subrutina requiere de un nombre Gnico con el que se identificara
dentro del programa. Opcionalmente se le puede enviar algin parametro el cual la subrutina
lo recibe con las variables que se declaran dentro de los paréntesis que estan inmediatamente
despues del nombre. El cddigo que forma parte de la subrutina se debe escribir hasta antes
de la palabra clave End.

El cddigo de la subrutina debe escribirse al final del programa, justo después de que termina
la rutina principal.

Ejemplo. Esta Subrutina calcula el promedio de dos numeros que recibe como argumento.

(valorl As , valor2 As
(valorl + valor2) / 2

El programa funciona de la siguiente forma: La rutina principal incia y cuando la ejecucion
alcanza la liena donde se ecuentra media(4,8), Gambas busca una funcién o subrutina que se
haya declarado al final de la rutina principal y brinca la ejecuciéon hasta ese punto del
programa. Al brincar, se envian los nimeros 4 y 8 como argumentos de la subrutina.

Ya en la subrutina, se reciben los dos nimeros 4 y 8 como argumentos y se almacenan en las
variables valorl y valor2 respectivamente. Observe que en ese momento se convierte ese
argumento al tipo de dato que se delcara en la subrutina, en este caso Integer. Por esta razén
si el argumento no fuera entero, se convertiria a Integer al guardarse en la variable.

Dentro de la subrutina se realiza el célculo y la impresion del resultado. Una vez que se
alcanza el End de la subrutina, se brinca de vuelta al punto donde ésta fue llamada y como
ya no hay mas intrucciones se completa asi la ejecucion del programa.

Las variables valorl y valor2 solamente existen dentro de la subrutina. Esto sigifica que
cuando se manda llamar la subrutina, se declaran tales variables y ellas solo existen en
el ambito de la subrutina. Una vez que termina la ejecucion de la subrutina estas variables se
destruyen. A este tipo de variables se les Ilama variables locales.

Es posible que una subrutina llame a otras subrutinas a su vez, incluso puede llamarse a si
misma.

Funciones

Una funcién es un procedimiento que ejecuta cierta accion y obtiene un resultado. Las
funciones pueden o no recibir parametros para su ejecucion y pueden o no devolver algin
resultado.

La sintaxis para escribir una funcion es la siguiente:

nombreFuncion (pl As Tipo_variable, p2 As Tipo_variable, ...) As
cédigo que ejecuta la funcién
Return

La sintaxis de la funcion requiere de un nombre Unico con el que se identificara dentro del
programa. Opcionalmente se le puede enviar algin parametro el cual la funcion lo recibe con
las variables que se declaran dentro de los paréntesis que estan inmediatamente despues del

nombre. El cddigo que forma parte de la funcion se debe escribir hasta antes de la palabra
clave End.

Tal como la subrutina, el codigo de la funcion debera escribirse después de la rutina principal.

Ejemplo. Esta Funcién calcula el promedio de dos niumeros que recibe como argumento.

(4.8)
"El promedio es: "; x

valorl As , valor2 As
p as
p = (valorl + valer2) [/ 2
Return p

El programa funciona de la siguiente forma: La rutina principal incia, se declara la
variable x y cuando la ejecucion alcanza la liena donde se ecuentra x = media(4,8), Gambas
busca una funcidn o subrutina que se haya declarado al final de la rutina principal y brinca la
ejecucion hasta ese punto del programa. Al brincar, se envian los nidmeros 4y 8 como
argumentos de la subrutina.

Una vez que la ejecucion llegé a la funcidn, se reciben los dos numeros 4 y 8 como
argumentos y se almacenan en las variables locales valorl y valor2 respectivamente.
Observe que en ese momento se convierte ese argumento al tipo de dato que se delcara en la
funcidn, en este caso Integer. Por esta razon si el argumento no fuera entero, se convertiria
a Integer al guardarse en la variable.

En la funcién se declara la variable local p como Float. Luego se realiza el calculo y se
almacena en la variable p. Posteriomente se invoca a la instruccion Return, la cual se encarga
de devolver el contenido de la variable que se le pasa como argumento, en este
caso p. Return devuelve el contenido de la variable x al punto donde fue invocada la funcion,
en este caso ese valor se almacena en la variable local x de la subrutina principal.

Las variables valorl y valor2 solamente existen dentro de la funcién. Esto sigifica que
cuando se manda llamar la funcién, se declaran tales variables y ellas solo existen en
el ambito de la funcion. Una vez que termina la ejecucion de la funcion estas variables se
destruyen. A este tipo de variables se les llama variables locales.

2.3 Ciclos y Temporizacion

En el &mbito de la instrumentacion virtual , los ciclos y la temporizacién son elementos
esenciales para el control del flujo de ejecucidn de un programa, especialmente cuando se
trabaja con procesos de adquisicion de datos, monitoreo continuo o control en tiempo real.
Estos conceptos permiten que los instrumentos virtuales respondan de forma sincronizada a
las sefiales del mundo fisico, manteniendo una secuencia ldgica, precisa y eficiente de
ejecucion.

1. Concepto de Ciclos en Instrumentacién Virtual

Los ciclos o estructuras de repeticion son blogues de programacion que permiten ejecutar
una o varias instrucciones Multiples veces, ya sea mientras se cumple una condicién o
durante un numero especifico de iteraciones.

Su proposito principal es automatizar tareas repetitivas , como leer continuamente un
sensor, actualizar una gréfica o realizar calculos periddicos.

En el contexto de programas como LabVIEW , los ciclos son elementos graficos dentro
del diagrama de bloques y pueden contener tanto procesos I6gicos como de adquisicion o
procesamiento de sefiales.

Tipos principales de ciclos:

1. Ciclo For (Bucle For):
o Ejecuta un bloque de codigo un nimero determinado de veces.
o Es util cuando se conoce previamente el nimero de iteraciones, por ejemplo,
al realizar una lectura de 100 muestras de un sensor.
En LabVIEW, el ciclo For incluye un contador que indica la cantidad de
repeticiones.

Ejemplo practico:
Generar un promedio de temperatura a partir de 50 lecturas consecutivas de un
sensor digital.

2. Ciclo While (bucle While):
o Repita el codigo mientras una condicion sea verdadera (TRUE).
o Esideal para aplicaciones de monitoreo continuo o sistemas en tiempo real
que deben ejecutarse indefinidamente hasta que el usuario decida detenerlos.

Ejemplo practico:
Leer continuamente el valor de un sensor de presion y mostrarlo en un indicador
gréafico hasta que el usuario presione el botén de “Stop”.

Ciclo Hacer-Mientras o Repetir-Hasta:
o Se ejecuta al menos una vez y luego verifica la condicion.
o Se usa cuando sea necesario garantizar que el proceso suceda al menos una
vez antes de la evaluacion de la condicion.

Ejemplo practico:
Activar un actuador una vez y verificar su estado antes de continuar con el
monitoreo.

2. Importancia de la Temporizacion

La temporizacion se refiere al control del tiempo entre iteraciones o ejecuciones dentro de
un ciclo.

En instrumentacion virtual, el tiempo de muestreo o de espera entre cada lectura es un
parametro critico que afecta directamente la precision, estabilidad y velocidad del
sistema .

Sin una temporizacion adecuada, el programa podria:

« Saturar el procesador al ejecutar ciclos sin pausa.
o Perder informacion si la frecuencia de muestreo es demasiado baja.
o Descronizarse del proceso fisico si no hay control temporal.

Elementos comunes de temporizacion:

1. Retardos temporales (Delay):

o Se emplea para pausar la ejecucion un namero determinado de
milisegundos.

o En LabVIEW, se usa el blogue “Wait (ms)” para definir el intervalo de
espera entre iteraciones.

2. Temporizadores de hardware o software:

o En sistemas avanzados, los temporizadores permiten sincronizar la
adquisicion de datos con eventos externos, como sefiales de reloj o
interrupciones.

3. Frecuencia de muestreo:

o Defina cuantas veces por segundo se adquiere una sefial.

o De acuerdo con el teorema de Nyquist, la frecuencia de muestreo debe ser al
menos el doble de la frecuencia maxima de la sefial para evitar aliasing.
Ejemplo: si se mide una sefial de 100 Hz, la frecuencia minima de muestra
debe ser de 200 Hz.

Aplicaciones Practicas en Instrumentacion Virtual

Los ciclos y la temporizacion tienen aplicaciones directas en sistemas de control,
adquisicién y monitoreo industrial, entre las cuales destacan:

Monitoreo continuo de sensores:

Uso de un ciclo Mientras con un retardo de 100 ms para leer en tiempo real
variables como temperatura, presion o nivel de liquido.

Control PID digital:

Implementacion de un ciclo que calcula de forma periddica las acciones
proporcionales, integrales y derivativas con base en un tiempo de muestreo
definido.

Registro de datos (Data Logging):

Un ciclo ejecuta la lectura de un sensor y guarda los valores en un archivo cada
intervalo de tiempo determinado, asegurando una base de datos ordenada y con
marcas de tiempo precisas.

Simulacion de sefales:

Un ciclo For puede generar una onda senoidal o cuadrada en intervalos regulares,
simulando la respuesta de un sensor o actuador.

Consideraciones de disefio

La duracion del ciclo debe ser menor o igual al periodo de muestreo del sistema fisico
para evitar retrasos.

Es recomendable utilizar estructuras de temporizacion no blogueantes , de modo que
el sistema pueda seguir respondiendo a eventos del usuario.

En aplicaciones criticas, se deben usar temporizadores de hardware sincronizados con
sefiales externas (disparadores) para garantizar la precision.

2.4 Arreglos y grupos de datos.

En el desarrollo de aplicaciones de instrumentacion virtual, la gestion eficiente de la
informacidn es fundamental. Las sefiales provenientes de sensores, actuadores o sistemas de
control generan grandes volimenes de datos que deben organizarse y procesarse
adecuadamente.

Para lograrlo, los arreglos y grupos de datos (clusters) son estructuras de almacenamiento
que permiten manipular informacion de forma ordenada, optimizando tanto la velocidad de
procesamiento como la claridad del programa.

Estas estructuras son la base para el andlisis de sefiales, la adquisicion de datos, la
visualizacion grafica y la interconexion entre modulos de software y hardware.

Arreglos (Arrays)

Un arreglo es una estructura de datos que almacena maltiples elementos del mismo tipo (por
ejemplo, una lista de valores numéricos, cadenas de texto o booleanos).
Los arreglos permiten acceder, modificar, calcular y graficar grandes conjuntos de datos de
manera mas eficiente que si se manejaa cada valor por separado.

En instrumentacion virtual, los arreglos son esenciales para almacenar secuencias de
mediciones tomadas a intervalos regulares, como temperatura, voltaje, corriente, presion o
desplazamiento.

Tipos de arreglos:

Unidimensionales: contienen una sola fila o columna de datos (por ejemplo, 100 lecturas de
voltaje).

v Bidimensionales: organizan los datos en filas y columnas, semejantes a una tabla (por
ejemplo, una matriz de datos experimentales).
Multidimensionales: se usan para representar datos en mas de dos dimensiones, como
mapas tridimensionales de temperatura o presion.
Propiedades operaciones y comunes en arreglos:
indices: permiten acceder a una posicion especifica del arreglo (por ejemplo, el valor
namero 50 de 100 muestras).
Subconjuntos: se pueden extraer segmentos o subconjuntos de datos para analisis
especifico.
Funciones matematicas: se pueden aplicar operaciones como suma, promedio,
desviacion estandar o filtrado a todos los elementos del arreglo.
Gréficas: los arreglos se utilizan para alimentar graficas de tiempo real o
representaciones de sefiales adquiridas.

Ejemplo practico en LabVIEW:

Supongamos que un sistema de adquisicion de datos toma 100 lecturas de temperatura cada
segundo.

En el diagrama de bloques, se puede utilizar un For Loop para adquirir los datos y construir
un arreglo de 100 elementos.
Luego, este arreglo se envia a una grafica de onda (Waveform Graph) para visualizar la
evolucion temporal de la sefial.

Ejemplo en Python (con NumPy):
pitdn

import numpy as np
temperaturas = np.array([23.5, 23.8, 24.8, 24.3, 24.1])
promedic = np.mean{temperaturas)

1", promedio)

Este fragmento crea un arreglo con lecturas de temperatura y calcula su promedio, tal como
se haria en una aplicacién de monitoreo.

Grupos de Datos (Clusters)

Un cluster (grupo de datos) es una estructura que permite agrupar diferentes tipos de datos
en un solo contenedor.

A diferencia de los arreglos, donde todos los elementos deben ser del mismo tipo, los clusters
pueden contener valores numéricos, booleanos, cadenas, arrays u otros clusters .

Esto los convierte en una herramienta ideal para empaquetar informacién compleja
proveniente de un mismo proceso o medicion.

Por ejemplo, una lectura de sensor puede incluir el valor medido (numérico), la unidad
(cadena de texto), la hora de registro (timestamp) y el estado del sensor (booleano).

Caracteristicas de los clusters:

o Permitiran mantener la coherencia entre distintos tipos de datos asociados.

o Mejoran la legibilidad del programa al agrupar informacion relacionada.

o Pueden anidarse (clusters dentro de clusters) para organizar jerarquicamente los
datos.
Facilitan la comunicacion de datos entre subrutinas o subVIs.

Ejemplo practico en LabVIEW:

Un cluster puede contener:

Un valor de temperatura (numerico).

El estado del sistema (booleano), indicando si el sensor esta activo.
Una cadena de texto con la etiqueta “Sensor 1”.

Una marca de tiempo.

Este cluster puede conectarse a un solo terminal de entrada/salida, simplificando el diagrama
de blogues y haciendo el codigo mas modular.

Ejemplo practico en Python (usando diccionarios o tuplas):

pitdén

Aplicaciones de Arreglos y Clusters en Instrumentacion Virtual

+ Adquisicion de datos: Los valores obtenidos por tarjetas DAQ se almacenan en
arreglos para su analisis estadistico y graficacion.

+ Procesamiento de sefiales: Los arreglos permiten aplicar filtros digitales,
transformadas de Fourier o calculos RMS sobre los datos adquiridos.

+ Visualizacion de informacion: Los clusters se usan para mostrar multiples variables
(como temperatura, presion y tiempo) en una sola interfaz.

+ Transmision y almacenamiento de datos: Los grupos de datos se pueden enviar entre
subprogramas o guardar en archivos JSON, TXT o CSV para anélisis posterior.

+ Control de sistemas mecatrénicos: Un cluster puede contener tanto las sefiales de
entrada de sensores como las salidas de control hacia actuadores, permitiendo un
manejo estructurado del sistema completo

2.5 Cadenas y Archivos de Entrada / Salida

Cadenas

Definicion

Una cadena es una secuencia ordenada de caracteres alfanuméricos que puede incluir letras,
nameros, espacios y simbolos. En instrumentacion virtual, las cadenas son utilizadas para

representar informacion textual dentro de los programas, como nombres de sensores,
mensajes en interfaces graficas, comandos de comunicacion o rutas de archivos.

En entornos como LabVIEW , las cadenas pueden visualizarse mediante indicadores y
controles especificos, mientras que en lenguajes como Python , se manejan mediante comillas

("o ("),

Usos comunes de las cadenas

Mensajes e interfaces de usuario: mostrar texto informativo o estados del sistema (“Sistema
conectado”, “Lectura completada”, etc.).

Comandos de comunicacion: enviar y recibir instrucciones a través de puertos de
comunicacion (por ejemplo, RS-232 0 USB).

Rutas de archivos: defina la ubicacion de los archivos que se van a leer o escribir.

Conversion de datos: transforma valores numericos a texto o viceversa para su visualizacion
o0 almacenamiento.

Etiquetas y unidades: mostrar junto a los datos medidos (por ejemplo, “Voltaje = 12.5 V”).

Funciones comunes aplicadas a cadenas

Concatenacidn: unir varias cadenas en una sola (por ejemplo, "Sensor: " + "Temperatura“—
"Sensor: Temperatura™).

Busqueda y reemplazo: localizar una palabra o simbolo dentro de un texto y sustituirlo.

Subcadenas: extraer partes especificas de una cadena (por ejemplo, solo la fecha dentro de
una marca de tiempo).

Conversion numeérica: transformar cadenas con nimeros (“23.4”) en valores numéricos
reales para calculos.

Ejemplo en LabVIEW:

En un VI de monitoreo de sensores, una cadena puede combinarse con un valor numérico
para mostrar en pantalla:
"Temperatura actual: " + valor_numeérico + " °C"

Ejemplo en Python:

pitdn

temperatura
mensaje = "Temperatura a 3] (temperatura) +

(mensaje)

Salida:
Temperatura actual: 26.8 °C

Archivos de Entrada y Salida (File 1/0)

La entrada/salida de archivos (Input/Output o 1/0) consiste en los procesos de lectura y
escritura de informacion hacia o desde archivos almacenados en un medio fisico, como un
disco duro 0 memoria USB.
Esta operacién permite que un instrumento virtual almacene registros, recuperar
configuraciones previas o exportar resultados para analisis posteriores.

En instrumentacion virtual, los archivos son esenciales para lograr persistencia de datos,
trazabilidad de mediciones y comunicacion entre sistemas.

Tipos de archivos mas comunes

+ Archivos de texto (.txt, .csv):

Féciles de leer y manipular.
Ideales para guardar datos numeéricos o registros de sensores.

Los archivos .csv(valores separados por comas) son ampliamente usados para compatibilidad
con Excel o MATLAB.

+ Archivos binarios (.dat, .bin):
Almacenan datos en formato binario, ocupando menos espacio.

Permiten una lectura y escritura mas rapida, util en grandes volimenes de datos o sefiales de
alta frecuencia.

+ Archivos de configuracion (.ini, .json):

Contiene parametros de calibracién o ajustes del sistema que el programa puede leer al
iniciar.

+ Archivos de registro o log (.log):

Guardan eventos del sistema, errores o advertencias para diagnostico y mantenimiento.

Operaciones bésicas de archivos

Apertura del archivo: especifique si se leera, escribira o modificara.

Lectura o escritura: realizar la operacion correspondiente.

Cierre del archivo: liberar los recursos y asegurar que los datos se guarden correctamente.
Ejemplo en LabVIEW:

Write to Text File.vi: permite escribir cadenas o datos numéricos en un archivo de texto.

Leer desde Spreadsheet File.vi: lee datos de archivos .csvo .txty los convierte en arreglos
numericos.

File Dialog.vi: abre un cuadro para seleccionar archivos desde el explorador del sistema.

Ejemplo en Python:

pitdn

with ("lecturas.txt", "w") as archivo:

archivo.write("Temperat

with ("lecturas.txt", "r") as archivo:
contenido = archivo.

(contenido)

Aplicaciones en Instrumentacion Virtual

Registro de datos experimentales: Guarde las mediciones obtenidas por sensores (por
ejemplo, temperatura, voltaje o caudal) con marcas de tiempo.

Anédlisis post-proceso: Los datos almacenados pueden importarse a software como Excel,
MATLAB o Python para graficar o realizar analisis estadistico.

Configuracion dinamica de sistemas: Los archivos de texto o JSON pueden contener
parametros (como limites de alarma o constantes de calibracion) que el programa carga al
iniciar, adaptando su comportamiento automéaticamente.

Comunicacion entre instrumentos virtuales: Varios VIs o scripts pueden compartir
informacién escribiendo y leyendo un mismo archivo de datos.

Generacion de informes automaticos: Mediante cadenas, se construyen informes con los
resultados de mediciones, que luego se guardan o imprimen en formato de texto o PDF.

Ventajas del uso de cadenas y archivos 1/0

Trazabilidad: los datos quedan registrados para validacion o auditorias.

Flexibilidad: permiten configurar programas sin necesidad de modificar el codigo.
Interoperabilidad: los archivos generados pueden leerse en otros programas o sistemas.

Automatizacion: posibilitan la creacion de informes automaticos o el almacenamiento de
periddicos de informacion sin intervencion humana.

Conclusiones

El estudio de los instrumentos virtuales permite comprender la forma en que la programacion
y la digitalizacion han transformado la instrumentacion y el control de procesos industriales.
A través del analisis de los distintos temas —desde los ambientes de programacién hasta la
gestion avanzada de datos— se evidencia que la instrumentacién virtual no solo facilita la
adquisicion y procesamiento de sefiales, sino que también optimiza la interaccién entre el
operador y el sistema mediante interfaces personalizadas, automatizacion y almacenamiento
eficiente de informacion.

Los conceptos de funciones, subrutinas, ciclos, temporizacion, arreglos, clusters, cadenas y
archivos 1/0 conforman los fundamentos que permiten estructurar aplicaciones robustas y
precisas. Estos elementos, combinados con un software adecuado, hacen posible desarrollar
herramientas virtuales que sustituyen o complementan a los instrumentos fisicos
tradicionales, mejorando la flexibilidad, escalabilidad y capacidad de andlisis de los sistemas
mecatronicos.

Referencias bibliograficas

[1] N. Navani, S. Sharma y M. Sapra, Instrumentacion virtual con LabVIEW . Nueva Delhi,
India: Tata McGraw-Hill Education, 2011.

[2] R. Bishop, Aprendiendo con LabVIEW 2020. Upper Saddle River, NJ, EE. UU.:
Pearson Education, 2020.

[3] JW Dally, WF Riley y KG McConnell, Instrumentation for Engineering Measurements
, 2.2ed. Nueva York, NY, EE. UU.: Wiley, 2022.

[4] National Instruments, “Introduccion a la instrumentacion virtual”, NI Technical Report ,
Austin, TX, EE. UU., 2023. [En linea]. Disponible en: https://www.ni.com

[5] A. Gilat y V. Subramaniam, Introduccion a la programacion con MATLAB , 6.2 ed.
Hoboken, NJ, EE. UU.: Wiley, 2018.

ﬁ@ INSTITUTO TECNOLOGICO SUPERIOR
| DE SAN ANDRESTUXTLA

ITSSAT

PRACTICA UlI

CARRERA
INGENIERIA MECATRONICA

PRESENTA
FRANCISCO EDUARDO AZAMAR
GRUPO:

911-A

CATEDRATICO
DR. JOSE ANGEL NIEVES VASQUEZ

ASIGNATURA:
INSTRUMENTACION VIRTUAL

SAN ANDRES TUXTLA VER, A 04 DE OCTUBRE DEL 2025

Introduccion

En los procesos industriales, el control de variables es un aspecto fundamental para garantizar
la eficiencia, la seguridad y la calidad de los productos. Variables como la temperatura, la
presion, el caudal o el nivel deben mantenerse dentro de rangos especificos para asegurar el
correcto funcionamiento de los equipos y la estabilidad del proceso. Para lograrlo, se emplean
sistemas de control automatico que permiten regular estas variables en tiempo real,
compensando perturbaciones externas y minimizando errores.

Dentro de los diferentes métodos de control, el control PID (Proporcional, Integral y
Derivativo) se ha consolidado como uno de los més utilizados en la industria debido a su
simplicidad, robustez y capacidad de adaptacion a una amplia variedad de sistemas. Este
controlador ajusta continuamente la sefial de salida de acuerdo con la diferencia entre el valor
deseado (setpoint) y el valor real de la variable, corrigiendo desviaciones de forma eficiente.

En esta practica se desarrolla una simulacion del control de temperatura mediante un
controlador PID implementado en el lenguaje Python, con el objetivo de comprender el
comportamiento dindmico del sistema y observar como las acciones proporcionales,
integrales y derivativas influyen en la estabilidad y respuesta del proceso. De esta manera, se
destaca la relevancia del control automéatico como una herramienta esencial para la
optimizacion y automatizacion de los sistemas industriales modernos.

Objetivo de la préactica

Disefiar una simulacion de un proceso industrial donde se mida alguna variable fisica
(temperatura, nivel, flujo o presion), utilizando cualquier software de disefio 0 programacion.

Marco tedrico

Una variable de proceso es una condicion fisica o quimica que es de interés medir y
controlar, ya que puede alterar la produccion o manufactura. En la instrumentacion
industrial se consideran las siguientes cuatro variables como las principales:

e Presion
e Temperatura
e Nivel

Flujo

Presion

En ingenieria, el término presion se refiere generalmente a la fuerza ejercida por un fluido
por unidad de area de la superficie que lo encierra. Existen muchas razones por las cuales en
un determinado proceso se debe medir presion. La calidad del producto frecuentemente
depende de ciertas presiones que se deben mantener en un proceso. Por seguridad, en
recipientes presurizados donde no debe exceder un valor maximo dado por las
especificaciones del disefio, también en aplicaciones de medicion de nivel,

Temperatura

La temperatura es una de las variables mas usadas en la industria de control de procesos y
bésica para medicion y control de flujo, asi como de la densidad, entre otros. Su medicion y
control, son vitales para asegurar uniformidad en la calidad de los productos terminados y
mantenerse dentro de los limites seguros en operaciones que tengan riesgos de fuego y/o
explosion.

Nivel

Su aplicacion mas frecuente es la medicion del volumen de liquidos, aunque también se
emplea en almacenamiento de materiales sélidos. Algunos ejemplos de su utilidad son el
control y la medicion para evitar que un liquido se derrame, la medicién de nivel de un
deposito, el control de contenido corrosivo, abrasivo, en altas presiones, radiactivo, entre

otros. En algunos fluidos junto con el nivel se mide la temperatura para calcular el volumen
ya compensado.

Flujo

Es la cantidad de fluido que pasa en una unidad de tiempo. Normalmente se identifica con el
flujo volumétrico o maésico que pasa por un area dada en una unidad de tiempo. Las
aplicaciones son muchas, desde las mas sencillas, como la medicion de flujo de agua en
estaciones de tratamiento y residencias, hasta medicion de gases industriales y combustibles,
pasando por mediciones méas complejas.

Simulacién de variables fisicas mediante software

Las simulaciones de fisica son herramientas educativas que permiten recrear fendmenos
fisicos de forma interactiva y visual. Su utilidad en el aprendizaje radica en que facilitan la
comprension de conceptos abstractos, estimulan el razonamiento cientifico y fomentan la
experimentacion. Ademas, pueden ayudar a los estudiantes a desarrollar habilidades como la
resolucion de problemas, el pensamiento critico y la creatividad.

Beneficios de utilizar simulaciones de fisica en el aula

+ Permiten mas experiencias de laboratorio

Con simulaciones virtuales, los estudiantes pueden visualizar e interactuar con conceptos
fuera del &mbito de un laboratorio tradicional. Por ejemplo, pueden manipular parametros o
variables como la gravedad y la friccion. También pueden recrear experimentos importantes
de Fisica, pero que son demasiado laboriosos, riesgosos o costosos de realizar.

+ Facilitan la participacién de todos los estudiantes.

Las simulaciones permiten que los estudiantes puedan practicar e interactuar con sus
compafieros al compartir sus experiencias y discutir los resultados obtenidos.

+ Permiten que los estudiantes retengan mejor lo que han aprendido.

Actualmente, las simulaciones son mas que aplicaciones de hacer clic y reproducir; algunas
permiten una experiencia de laboratorio completa, ya que son disefiadas para funcionar como
un laboratorio real. Utilizarlas en el aula de clases, ya sea de forma presencial o virtual, puede
mejorar el desarrollo de habilidades de los estudiantes, asi como su conocimiento conceptual.

+ Proporcionan retroalimentacion inmediata

Las simulaciones permiten que los estudiantes, en caso de cometer errores, puedan corregir
conceptos o datos erréneos, asi como a los profesores intervenir en el proceso de aprendizaje
cuando sea necesario.

+ Disponibilidad las 24 horas

Los estudiantes puede acceder en cualquier momento del dia a las simulaciones virtuales, lo
que brinda una excelente opcidn para recuperar clases perdidas o repetir experimentos sin
preocuparse por costos de mantenimiento o materiales limitados.

+ Son seguras y rentables

En el caso de simulaciones de experimentos, los profesores pueden brindar asistencia a sus
estudiantes de forma individual sin tener que estar monitoreando continuamente el
cumplimiento de los procedimientos y la seguridad. Ademas, complementar las clases con
simulaciones proporciona a cada estudiante una experiencia practica y reduce la cantidad
gastada en costosos instrumentos y suministros de laboratorio.

Softwares de simulacion de uso libre

Python

@ python’

Python es un lenguaje de programacion informatica que se utiliza a menudo para crear sitios
web y software, automatizar tareas y realizar andlisis de datos. Python es un lenguaje de
proposito general, lo que significa que se puede utilizar para crear una variedad de programas
diferentes y no esta especializado en ningln problema especifico. Esta versatilidad, junto con
su facilidad para los principiantes, lo ha convertido en uno de los lenguajes de programacion
mas utilizados en la actualidad.

Algodoo

Algodoo es un software de simulacion de fisica 2D al estilo “sandbox” (caja de arena),
desarrollado por Algorix Simulation AB, que permite a los usuarios crear escenarios
interactivos y experimentar con diferentes situaciones fisicas, ya que permite controlar una
gran cantidad de variables y parametros, como la gravedad, friccion, indice de refraccion,
densidad, presion, flotabilidad, entre otros. Es facil de usar y tiene una interfaz intuitiva, tiene
amplio soporte para acelerémetros, pantallas tactiles, e Intel Classmate PC. EI motor fisico
del software esta basado en la constante lineal SPOOL. También incluye contenido como
planes de lecciones, escenas predisefiadas y tutoriales.

Physion

Physigr

Physion es un software de simulacion de fisica gratuito que permite disefiar y simular
experimentos de fisica realistas en un mundo fisico virtual. Puede ser considerado como una
aplicacion CAD combinada con un motor de fisica 2D donde los objetos que se disefian
pueden simularse instantaneamente.

Tracker. Video Analysis and modeling tool

0Tracker

—Il'|_.|| _._.. 1|l.' |r|ll |.l I|:'

Tracker. Video Analysis and modeling tool es una herramienta gratuita de analisis de video
y construccion de modelos disefiados para ser usado en la ensefianza de la Fisica. Esta basada
en el marco Java Open Source Physics (OSP). Entre sus caracteristicas se encuentra:

Seguimiento de objetos manual y automatizado con superposiciones y datos de
posicién, velocidad, y aceleracion.

La opcion Model Builder crea modelos cinematicos y dindmicos de particulas de
masa puntual y sistemas de dos cuerpos.

El motor de video gratuito Xuggle reproduce y graba muchos formatos (mov, avi, flv,
mp4, wmv.) en Windows, MacOS y Linux.

Posee herramientas de analisis de datos que incluyen ajuste de curvas manual o
automatico.

Cuenta con una extensa biblioteca de recursos digitales.

Easy Javascript Simulations

o,
/

Easy Javascript Simulations (EJSS), anteriormente conocido como Easy Java Simulations,
es una herramienta de autoria gratuita escrita en Java que ayuda a los no programadores a
crear simulaciones interactivas en Java o Javascript, principalmente con fines educativos.
EJS ha sido creado por Francisco Esquembre y forma parte del proyecto Open Source
Physics.

Energy2D

Energy2D es un software de simulacion de fisica que se basa en la investigacion de la fisica
computacional y modela los tres mecanismos de transferencia del calor: conduccion,
conveccion y radiacion. Es una herramienta util para la ensefianza de las ciencias
experimentales, ya que permite a los estudiantes comprender mejor los conceptos abstractos
y complejos de la fisica, y les brinda la oportunidad de experimentar con diferentes
situaciones y escenarios.

Simphy

Phy

Physics Simplified

Simphy es un software de simulacion de fisica que ofrece simulaciones interactivas en 3D de
electricidad, éptica, mecanica, fluidos, entre otros. Los profesores pueden crear sus propias
simulaciones con herramientas de arrastrar y soltar, y acceder a una gran biblioteca de
simulaciones (alguna de ellas gratis).

Desarrollo

Para la realizacion de esta practica, se decidid realizar un cddigo en Python que permita
visualizar una simulacion del control de una variable fisica en tiempo real, para este ejercicio
se utilizé la variable de temperatura por ser una de las mas manipulables.

Dicho proceso se trato de desarrollar mediante un controlador PID para obtener un a mejor
monitorizacion de la variable y de esta forma llegar a un mejor equilibro en un menor tiempo.

A continuacion, se muestra el codigo disefiado en el entorno de Python.

-*- coding: utf-8 -*-
Created on Sat Oct 4 18:06:40 2025

@author: Francisco

mwwn

import tkinter as tk
from tkinter import ttk
import matplotlib.pyplot as plt

from matplotlib.backends.backend tkagg import
FigureCanvasTkAgg

import numpy as np

Parametros del sistema
Kp 2.0
Ki 0.1
Kd 1.0

Variables de simulacidn
setpoint = 60.0

temperatura = 25.0

error _prev =
integral = 0.0

running = False

tiempo = [0]

valores temp = [temperatural]

valores set = [setpoint]

Ventana principal
root = tk.Tk()
root.title("Simulacidén de Control de Temperatura con PID")

root.configure (bg="#eef2f3")

Crear figura de Matplotlib
fig, ax = plt.subplots(figsize=(6, 3))
ax.set title("Evolucién de la temperatura")

ax.set xlabel ("Tiempo (s)")

ax.set ylabel ("Temperatura (°cy™)

linea temp, = ax.plot(tiempo, valores temp, "r-",
label="Temperatura™)

linea set, = ax.plot(tiempo, valores set, "b--",
label="Setpoint")

ax.legend ()
canvas = FigureCanvasTkAgg (fig, master=root)

canvas.get tk widget () .grid(row=0, column=1, rowspan=10,
padx=15, pady=10)

——— Elementos GUI (lado izquierdo) ---

tk.Label (root, text="Setpoint (°C):",
bg="#eef2f3") .grid (row=0, column=0, pady=5)

entry setpoint = ttk.Entry(root)

entry setpoint.insert (0, "60.0")

entry setpoint.grid(row=1l, column=0)

label temp = tk.Label (root, text=f"Temperatura actual:
{temperatura:.1f} °C", font=("Arial", 12), bg="#eef2f3")

label temp.grid(row=2, column=0, pady=5)

label potencia = tk.Label (root, text="Potencia del
calentador: 0%", font=("Arial", 10), bg="#eef2f3")

label potencia.grid(row=3, column=0, pady=5)

label estado = tk.Label (root, text="Calentador: APAGADO",
font=("Arial", 11, "bold"), fg="gray", bg="#eef2f3")

label estado.grid(row=4, column=0, pady=5)

—-—-- Canvas para la caldera ---

canvas caldera = tk.Canvas(root, width=200, height=200,
bg="#dfe6e9")

canvas_ caldera.grid(row=5, column=0, pady=10)

rect caldera = canvas_caldera.create rectangle (60, 80, 140,
140, fill="blue")

label caldera = tk.Label (root, text="Caldera", bg="#eef2f3")

label caldera.grid(row=6, column=0)

--- Botones ---

def iniciar():
global running
running = True

simular ()

detener () :
global running

running = False

btn iniciar = ttk.Button(root, text="Iniciar Simulacién",
command=iniciar)

btn iniciar.grid(row=7, column=0, pady=5)

btn detener = ttk.Button(root, text="Detener Simulacién",
command=detener)

btn detener.grid(row=8, column=0, pady=5)
-—— Lbégica PID y simulacidén —---
def simular() :

global temperatura, integral, error prev, running, tiempo

if not running:

return

try:

sp = float (entry setpoint.get())

except ValueError:

Sp = setpoint

error = Sp - temperatura

integral += error

derivada = error - error_prev

potencia Kp * error + Ki * integral + Kd * derivada
potencia max (0, min (potencia, 100)) # Limite 0-100%

€rror prev = error

Dindmica del sistema

temperatura += (potencia * 0.05) - (temperatura - 25) *
.02

Actualizacidn visual

label temp.config(text=f"Temperatura actual:
{temperatura:.l1f} °C")

label potencia.config(text=f"Potencia del calentador:
{potencia:.1f}%")

label estado.config(text="Calentador: ENCENDIDO",
fg="green" if potencia > 0 else "gray")

Color de caldera segun temperatura
if temperatura < 25:

color = "#87CEFA" # Azul claro
elif 25 <= temperatura <= 35:

color = "blue"
elif 36 <= temperatura <= 45:

color = "yellow"
elif 46 <= temperatura <= 60:

color = "orange"
else:

color =

canvas_ caldera.itemconfig(rect caldera, fill=color)

Actualizar grafico
tiempo.append (tiempo[-1] + 1)
valores temp.append(temperatura)

valores set.append (sp)

linea temp.set data(tiempo, valores temp)
linea set.set data(tiempo, valores set)

ax.relim()

ax.autoscale view ()

canvas.draw ()

root.after (200, simular) # Llamada peridédica (200 ms)

root.mainloop ()

Resultados

Después de revisar posibles errores en el codigo, procedemos a ejecutarlo en la consola 'y
visualizar los datos obtenidos.

Simulacién de Control de Temperatura con PID
Setpoint (*C):
CO— i
o] Evolucion de |la temperatura
Temperatura actual: 25.0 °C
Potencia del calentador: 0% Temperatura

Calentador: APAGADO —=—=- Setpoint

Caldera

Temperatura (°C)

Iniciar Simulacién

—0.04 -0.02 0.00 0.02 0.04

Detener Simulacién Timmanma ()

Esta es la interfaz disefiada, en la cual se pueden apreciar los valores iniciales de la

temperatura de nuestro proceso, en este caso se eligié una caldera hipotética, de igual forma
podemos apreciar el valor del setpoint, en este caso es de 60°, la ilustracién de la caldera
cambiara de color conforme aumente o disminuya la temperatura del proceso.

Simulacién de Control de Temperatura con PID
Setpoint (°C):

Evolucién de la temperatura

Temperatura actual 38.5 °C

Patencia del calentador: 57.1%

Calentador: ENCENDIDO

Temperatura (°C)

—— Temperatura
—=—=- Setpoint

Caldera

3.5 4.0

Iniciar Simulacion

‘Detener Simulacién

Al iniciar con la simulacidn, se aprecia que la caldera cambia a un color amarillo cuando la
temperatura sobrepasa los 35°, mientras que la potencia del calentador se encuentra a un
57% y sigue en acenso para llegar al valor deseado.

a Simulacién de Control de Temperatura con PID
Setpoint (°C):

Evolucién de la temperatura

Temperatura actual: 54.5 °C

Potencia del calentador: 35.7%

Calentader: ENCENDIDO

Temperatura (°C)

—— Temperatura
—== Setpoint

Caldera

10 12

Iniciar Simulacidn

iDetener Simulacion:

Conforme pasa el tiempo, la temperatura sigue subiendo y nuestra representacion de la
caldera cambia de color.

G’ Simulacién de Control de Temperatura con PID
Setpoint (°C):

Evolucién de la temperatura

Temperatura actual 61 .3 °C

Potencia del calentador: 23.3%

Calentador: ENCENDIDO

Caldera

—
O
0
—_
]
“
=
e}
(1]
—
[F]
o
5
=

—— Temperatura
—-=—=- Setpoint

20

Iniciar Simulacion

Después de sobrepasar el valor del setpoint establecido, la tonalidad del grafico es roja,
simulando un estado de alerta, el cual inicia un proceso inverso para controlar el valor de la
temperatura del proceso.

a Simulacién de Control de Temperatura con PID
Setpoint ("C):

Evolucion de la temperatura

Temperatura actual 60 0 °C

Potencia del calentador: 14.0%

Calentador: ENCENDIDO

Temperatura (°C)

—— Temperatura
=== Setpoint

Caldera

80 100

Detener Simulacion

De esta forma tenemos la simulacién completa, apreciamos la forma que adopta la grafica
de temperatura con respecto al tiempo, para este proceso podemos afirmar que nuestro
proceso se estabiliza alrededor de los 80s.

Conclusiones

La préctica realizada permitié comprobar la utilidad de Python como herramienta para el
modelado y simulacién de sistemas de control en procesos industriales. A través de la
implementacién de un algoritmo de regulacién de temperatura, se observo el comportamiento
dindmico del proceso y la manera en que el controlador ajusta la variable manipulada para
mantener la variable de salida dentro de los valores deseados. Esta experiencia no solo
reforzé los conceptos tedricos del control de procesos, sino que también evidencio la
importancia de la simulacion computacional como etapa previa a la implementacion real, ya
que permite analizar el desempefio del sistema, detectar posibles mejoras y optimizar
pardmetros de manera segura y eficiente.

Referencias bibliogréaficas

1. Cietsa_Web, “Principales variables de los procesos industriales,” Cietsa, Aug. 01,
2023. https://cietsa.com.mx/principales-variables-de-los-procesos-industriales/

2. A. Interactiva and A. Interactiva, “Los 6 mejores programas para crear tus propias
simulaciones de fisica,” Aula Interactiva, Nov. 23, 2023. [Online]. Available:
https://aulainteractiva.com.ve/simulaciones-de-fisica/

3. C. Staff, “;Qué es Python y para qué se usa? Guia para principiantes,” Coursera,
Nov. 29, 2023. https://www.coursera.org/mx/articles/what-is-python-used-for-a-
beginners-guide-to-using-python

https://cietsa.com.mx/principales-variables-de-los-procesos-industriales/
https://aulainteractiva.com.ve/simulaciones-de-fisica/
https://www.coursera.org/mx/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://www.coursera.org/mx/articles/what-is-python-used-for-a-beginners-guide-to-using-python

LISTA DE COTEJO INVESTIGACION
INSTRUMENTACION VIRTUAL.

Nombre del estudiante: FRANCISCO EDUARDO AZAMAR.

Tema: APLICACIONES REALES DE LA INSTRUMENTACION VIRTUAL.

Portada 2%
Introduccion 5%
Desarrollo 10 %
Conclusiones 5%
Referencias 3%
Entrega en tiempo y forma 5%
Examen diagnostico 10 %

Total 40 %

2%

5%

10 %

S%

3%

5%

10 %

40%

N

ITSSAT

LISTA DE COTEJO DE PRACTICAS
INSTRUMENTACION VIRTUAL.

Nombre del estudiante: FRANCISCO EDUARDO AZAMAR.

Tema: PRACTICA NUMERO U2

Portada 5%
Introduccion 10 %
Desarrollo 30 %
Conclusiones 5%
Referencias 2%
Entrega en tiempo y forma 8%

Total 60 %

5%

10 %

30 %

5%

2%

8 %

60 %

Y

ITSSAT

