

INSTITUTO TECNOLÓGICO SUPERIOR

DE SAN ANDRÉSTUXTLA

INVESTIGACIÓN DOCUMENTAL UII

“APLICACIONES REALES

DE LA INSTRUMENTACIÓN VIRTUAL”

CARRERA

INGENIERÍA MECATRÓNICA

PRESENTA

FRANCISCO EDUARDO AZAMAR

GRUPO:

911-A

CATEDRÁTICO

DR. JOSÉ ÁNGEL NIEVES VÁSQUEZ

ASIGNATURA:

INSTRUMENTACIÓN VIRTUAL

SAN ANDRES TUXTLA VER, A 06 DE OCTUBRE DEL 2025

Introducción

En la actualidad, la instrumentación virtual representa una de las herramientas más

importantes dentro del campo de la Ingeniería Mecatrónica, ya que permite integrar la

medición, el control y la automatización de procesos mediante el uso del software y el

hardware programable. A diferencia de los instrumentos tradicionales, los instrumentos

virtuales ofrecen la capacidad de diseñar, simular y ejecutar funciones de adquisición y

análisis de datos a través de entornos de programación flexibles, tales como LabVIEW,

MATLAB o Python, lo que reduce costos, optimiza recursos y mejora la precisión en la toma

de decisiones técnicas.

El bloque “Instrumentos Virtuales” tiene como objetivo comprender los principios de

programación y manejo de datos aplicados a la instrumentación. A lo largo de los subtemas

se estudian los ambientes de programación y las estructuras fundamentales, tales como

funciones, subrutinas, ciclos y temporización, que son indispensables para el desarrollo

lógico de los programas.

Además, se profundiza en el uso de arreglos, grupos de datos, cadenas y archivos de

entrada/salida, los cuales permiten organizar, almacenar y comunicar la información

generada por los sistemas de medición. Finalmente, se integran estos conceptos en ejemplos

prácticos con software especializado, demostrando su aplicabilidad en entornos reales de

monitoreo y control.

En conjunto, estos conocimientos brindan al estudiante una base sólida para diseñar

soluciones de instrumentación modernas, eficientes y escalables, capaces de adaptarse a los

requisitos actuales de la industria 4.0 y de los sistemas inteligentes de fabricación.

Instrumentos Virtuales.

La rápida adopción de la PC en los últimos 20 años catalizó una revolución en la

instrumentación para pruebas, medición y automatización. Un desarrollo importante

derivado de la ubicuidad de la PC es el concepto de instrumentación virtual, que ofrece

diversas ventajas a ingenieros y científicos que requieren mayor productividad, precisión y

rendimiento.

Un instrumento virtual consiste en una computadora o estación de trabajo estándar de la

industria equipada con un potente software de aplicación, hardware rentable, como placas de

conexión, y software de controlador, que en conjunto realizan las funciones de los

instrumentos tradicionales. Los instrumentos virtuales representan una transición

fundamental de los sistemas de instrumentación tradicionales centrados en hardware a

sistemas centrados en software que aprovechan la potencia de procesamiento, la

productividad, la visualización y las capacidades de conectividad de las computadoras de

escritorio y estaciones de trabajo más populares. Si bien la PC y la tecnología de circuitos

integrados han experimentado avances significativos en las últimas dos décadas, es el

software el que realmente proporciona la base para construir sobre esta potente base de

hardware y crear instrumentos virtuales, lo que ofrece mejores maneras de innovar y reducir

significativamente los costos. Con instrumentos virtuales, los ingenieros y científicos

construyen sistemas de medición y automatización que se adaptan exactamente a sus

necesidades (definidos por el usuario) en lugar de estar limitados por los instrumentos

tradicionales de función fija (definidos por el proveedor).

2.1Ambientes de programación

Los entornos de desarrollo pueden variar según el lenguaje de programación y el tipo de

aplicación que se desea construir. Sin embargo, todos comparten algunas características

clave:

 Editor de código: Es una de las partes más importantes. Permite escribir y editar el

código fuente con funciones avanzadas como resaltado de sintaxis, autocompletado

y corrección de errores.

 Compilador o intérprete: Se encarga de traducir el código fuente a un lenguaje que la

máquina pueda entender y ejecutar.

 Depurador: Facilita la identificación y corrección de errores en el código.

 Herramientas de prueba: Algunos entornos incluyen opciones para realizar pruebas

automáticas y asegurar que el software funcione correctamente.

 Control de versiones: Permite llevar un seguimiento de los cambios en el código,

facilitando el trabajo en equipo.

Tipos de entornos de desarrollo de programación

 Existen diferentes tipos de entornos de desarrollo según su funcionalidad y el tipo de

programación que soportan. A continuación, se mencionan algunos de los más

comunes:

 Entornos de desarrollo integrados (IDE): Son plataformas completas que incluyen

todas las herramientas necesarias para programar, como Visual Studio Code, Eclipse

o JetBrains IntelliJ IDEA.

 Editores de texto avanzados: Programas como Sublime Text o Atom que, aunque no

son IDE completos, ofrecen funciones avanzadas para la escritura de código.

 Entornos en la nube: Permiten programar sin necesidad de instalar software en la

computadora, como Replit o GitHub Codespaces.

 Entornos especializados: Diseñados para lenguajes o aplicaciones específicas, como

Android Studio para desarrollo de aplicaciones móviles en Android.

Ventajas de usar un entorno de desarrollo adecuado

Trabajar con un entorno de desarrollo de programación adecuado trae numerosos beneficios,

entre ellos:

 Mayor productividad: Al contar con herramientas que automatizan tareas

repetitivas y facilitan la depuración, se reduce el tiempo de desarrollo.

 Mejor organización del código: Facilita la estructuración de proyectos y la

colaboración entre desarrolladores.

 Reducción de errores: Gracias a las funciones de corrección y depuración, se

minimizan los errores en el código.

 Compatibilidad y escalabilidad: Algunos entornos permiten el desarrollo en

múltiples lenguajes y la integración con otras herramientas.

¿Cómo elegir el mejor entorno de desarrollo de programación?

Para seleccionar el mejor entorno de desarrollo, es importante considerar:

El lenguaje de programación: No todos los entornos son compatibles con todos los

lenguajes. Es clave elegir uno que se adapte al lenguaje que se va a utilizar.

La facilidad de uso: Algunos entornos son más intuitivos que otros. Para principiantes,

puede ser recomendable optar por un IDE con una interfaz sencilla.

La compatibilidad con herramientas externas: Si se requiere integrar bases de datos,

librerías o frameworks, es importante que el entorno lo permita.

El rendimiento y la estabilidad: Un buen entorno debe ser rápido y estable para evitar

interrupciones en el desarrollo.

Los ambientes de programación en instrumentación virtual son plataformas que permiten

diseñar, simular y controlar sistemas de medición o automatización mediante software. En

lugar de depender únicamente de hardware físico, se utilizan entornos gráficos o textuales

para crear “instrumentos virtuales” que emula el comportamiento de equipos reales como

multímetros, osciloscopios o controladores.

Algunos ejemplos son:

 LabVIEW (National Instruments): entorno gráfico ampliamente utilizado en

ingeniería para crear interfaces de adquisición de datos y control de procesos.

 MATLAB/Simulink: permite la simulación matemática y la integración con

hardware.

 Python (con librerías como PyVISA o NumPy): ideal para instrumentación con

código abierto.

2.2 Funciones y subrutinas.

Las funciones y subrutinas son bloques de código reutilizables que facilitan la organización

de un programa.

En instrumentación virtual, se usan para dividir tareas complejas en secciones más

pequeñas, como la adquisición de datos, el procesamiento de señales o la visualización de

resultados.

 Funciones: Devuelven un valor y se utilizan cuando se requiere un cálculo

específico (por ejemplo, calcular el promedio de una señal).

 Subrutinas (o subVIs en LabVIEW): ejecutan una tarea pero no necesariamente

devuelven un valor; Sirven para modularizar el código y hacerlo más legible.

El uso de funciones y subrutinas mejora la eficiencia, reduce errores y permite reutilizar

código en diferentes proyectos.

Subrutinas

Una subrutina es un procedimiento que ejecuta cierta acción y obtiene un resultado. Las

subrutinas pueden o no recibir parametros para su ejecución y no devuelven un resultado.

La sintáxis para escribir una subrutina es la siguiente:

Observe que la sintaxis de la subrutina requiere de un nombre único con el que se identificará

dentro del programa. Opcionalmente se le puede enviar algún parámetro el cual la subrutina

lo recibe con las variables que se declaran dentro de los paréntesis que están inmediatamente

despues del nombre. El código que forma parte de la subrutina se debe escribir hasta antes

de la palabra clave End.

El código de la subrutina debe escribirse al final del programa, justo después de que termina

la rutina principal.

Ejemplo. Esta Subrutina calcula el promedio de dos números que recibe como argumento.

El programa funciona de la siguiente forma: La rutina principal incia y cuando la ejecución

alcanza la líena donde se ecuentra media(4,8), Gambas busca una función o subrutina que se

haya declarado al final de la rutina principal y brinca la ejecución hasta ese punto del

programa. Al brincar, se envían los números 4 y 8 como argumentos de la subrutina.

Ya en la subrutina, se reciben los dos números 4 y 8 como argumentos y se almacenan en las

variables valor1 y valor2 respectivamente. Observe que en ese momento se convierte ese

argumento al tipo de dato que se delcara en la subrutina, en este caso Integer. Por esta razón

si el argumento no fuera entero, se convertiría a Integer al guardarse en la variable.

Dentro de la subrutina se realiza el cálculo y la impresión del resultado. Una vez que se

alcanza el End de la subrutina, se brinca de vuelta al punto donde ésta fue llamada y como

ya no hay más intrucciones se completa así la ejecución del programa.

Las variables valor1 y valor2 solamente existen dentro de la subrutina. Esto sigifica que

cuando se manda llamar la subrutina, se declaran tales variables y ellas solo existen en

el ámbito de la subrutina. Una vez que termina la ejecución de la subrutina estas variables se

destruyen. A este tipo de variables se les llama variables locales.

Es posible que una subrutina llame a otras subrutinas a su vez, incluso puede llamarse a sí

misma.

Funciones

Una función es un procedimiento que ejecuta cierta acción y obtiene un resultado. Las

funciones pueden o no recibir parametros para su ejecución y pueden o no devolver algún

resultado.

La sintáxis para escribir una función es la siguiente:

La sintaxis de la función requiere de un nombre único con el que se identificará dentro del

programa. Opcionalmente se le puede enviar algún parámetro el cual la función lo recibe con

las variables que se declaran dentro de los paréntesis que están inmediatamente despues del

nombre. El código que forma parte de la función se debe escribir hasta antes de la palabra

clave End.

Tal como la subrutina, el código de la función deberá escribirse después de la rutina principal.

Ejemplo. Esta Función calcula el promedio de dos números que recibe como argumento.

El programa funciona de la siguiente forma: La rutina principal incia, se declara la

variable x y cuando la ejecución alcanza la líena donde se ecuentra x = media(4,8), Gambas

busca una función o subrutina que se haya declarado al final de la rutina principal y brinca la

ejecución hasta ese punto del programa. Al brincar, se envían los números 4 y 8 como

argumentos de la subrutina.

Una vez que la ejecución llegó a la función, se reciben los dos números 4 y 8 como

argumentos y se almacenan en las variables locales valor1 y valor2 respectivamente.

Observe que en ese momento se convierte ese argumento al tipo de dato que se delcara en la

función, en este caso Integer. Por esta razón si el argumento no fuera entero, se convertiría

a Integer al guardarse en la variable.

En la función se declara la variable local p como Float. Luego se realiza el cálculo y se

almacena en la variable p. Posteriomente se invoca a la instrucción Return, la cual se encarga

de devolver el contenido de la variable que se le pasa como argumento, en este

caso p. Return devuelve el contenido de la variable x al punto donde fue invocada la función,

en este caso ese valor se almacena en la variable local x de la subrutina principal.

Las variables valor1 y valor2 solamente existen dentro de la función. Esto sigifica que

cuando se manda llamar la función, se declaran tales variables y ellas solo existen en

el ámbito de la función. Una vez que termina la ejecución de la función estas variables se

destruyen. A este tipo de variables se les llama variables locales.

2.3 Ciclos y Temporización
En el ámbito de la instrumentación virtual , los ciclos y la temporización son elementos

esenciales para el control del flujo de ejecución de un programa, especialmente cuando se

trabaja con procesos de adquisición de datos, monitoreo continuo o control en tiempo real.

Estos conceptos permiten que los instrumentos virtuales respondan de forma sincronizada a

las señales del mundo físico, manteniendo una secuencia lógica, precisa y eficiente de

ejecución.

1. Concepto de Ciclos en Instrumentación Virtual

Los ciclos o estructuras de repetición son bloques de programación que permiten ejecutar

una o varias instrucciones Múltiples veces, ya sea mientras se cumple una condición o

durante un número específico de iteraciones.

Su propósito principal es automatizar tareas repetitivas , como leer continuamente un

sensor, actualizar una gráfica o realizar cálculos periódicos.

En el contexto de programas como LabVIEW , los ciclos son elementos gráficos dentro

del diagrama de bloques y pueden contener tanto procesos lógicos como de adquisición o

procesamiento de señales.

Tipos principales de ciclos:

1. Ciclo For (Bucle For):
o Ejecuta un bloque de código un número determinado de veces.

o Es útil cuando se conoce previamente el número de iteraciones, por ejemplo,

al realizar una lectura de 100 muestras de un sensor.

o En LabVIEW, el ciclo For incluye un contador que indica la cantidad de

repeticiones.

Ejemplo práctico:
Generar un promedio de temperatura a partir de 50 lecturas consecutivas de un

sensor digital.

2. Ciclo While (bucle While):
o Repita el código mientras una condición sea verdadera (TRUE).

o Es ideal para aplicaciones de monitoreo continuo o sistemas en tiempo real

que deben ejecutarse indefinidamente hasta que el usuario decida detenerlos.

Ejemplo práctico:
Leer continuamente el valor de un sensor de presión y mostrarlo en un indicador

gráfico hasta que el usuario presione el botón de “Stop”.

3. Ciclo Hacer-Mientras o Repetir-Hasta:
o Se ejecuta al menos una vez y luego verifica la condición.

o Se usa cuando sea necesario garantizar que el proceso suceda al menos una

vez antes de la evaluación de la condición.

Ejemplo práctico:
Activar un actuador una vez y verificar su estado antes de continuar con el

monitoreo.

2. Importancia de la Temporización

La temporización se refiere al control del tiempo entre iteraciones o ejecuciones dentro de

un ciclo.

En instrumentación virtual, el tiempo de muestreo o de espera entre cada lectura es un

parámetro crítico que afecta directamente la precisión, estabilidad y velocidad del

sistema .

Sin una temporización adecuada, el programa podría:

 Saturar el procesador al ejecutar ciclos sin pausa.

 Perder información si la frecuencia de muestreo es demasiado baja.

 Descronizarse del proceso físico si no hay control temporal.

Elementos comunes de temporización:

1. Retardos temporales (Delay):
o Se emplea para pausar la ejecución un número determinado de

milisegundos.

o En LabVIEW, se usa el bloque “Wait (ms)” para definir el intervalo de

espera entre iteraciones.

2. Temporizadores de hardware o software:
o En sistemas avanzados, los temporizadores permiten sincronizar la

adquisición de datos con eventos externos, como señales de reloj o

interrupciones.

3. Frecuencia de muestreo:
o Defina cuántas veces por segundo se adquiere una señal.

o De acuerdo con el teorema de Nyquist, la frecuencia de muestreo debe ser al

menos el doble de la frecuencia máxima de la señal para evitar aliasing.

o Ejemplo: si se mide una señal de 100 Hz, la frecuencia mínima de muestra

debe ser de 200 Hz.

Aplicaciones Prácticas en Instrumentación Virtual

Los ciclos y la temporización tienen aplicaciones directas en sistemas de control,

adquisición y monitoreo industrial, entre las cuales destacan:

 Monitoreo continuo de sensores:
Uso de un ciclo Mientras con un retardo de 100 ms para leer en tiempo real

variables como temperatura, presión o nivel de líquido.

 Control PID digital:
Implementación de un ciclo que calcula de forma periódica las acciones

proporcionales, integrales y derivativas con base en un tiempo de muestreo

definido.

 Registro de datos (Data Logging):
Un ciclo ejecuta la lectura de un sensor y guarda los valores en un archivo cada

intervalo de tiempo determinado, asegurando una base de datos ordenada y con

marcas de tiempo precisas.

 Simulación de señales:
Un ciclo For puede generar una onda senoidal o cuadrada en intervalos regulares,

simulando la respuesta de un sensor o actuador.

Consideraciones de diseño

 La duración del ciclo debe ser menor o igual al período de muestreo del sistema físico

para evitar retrasos.

 Es recomendable utilizar estructuras de temporización no bloqueantes , de modo que

el sistema pueda seguir respondiendo a eventos del usuario.

 En aplicaciones críticas, se deben usar temporizadores de hardware sincronizados con

señales externas (disparadores) para garantizar la precisión.

2.4 Arreglos y grupos de datos.

En el desarrollo de aplicaciones de instrumentación virtual, la gestión eficiente de la

información es fundamental. Las señales provenientes de sensores, actuadores o sistemas de

control generan grandes volúmenes de datos que deben organizarse y procesarse

adecuadamente.

Para lograrlo, los arreglos y grupos de datos (clusters) son estructuras de almacenamiento

que permiten manipular información de forma ordenada, optimizando tanto la velocidad de

procesamiento como la claridad del programa.

Estas estructuras son la base para el análisis de señales, la adquisición de datos, la

visualización gráfica y la interconexión entre módulos de software y hardware.

Arreglos (Arrays)

Un arreglo es una estructura de datos que almacena múltiples elementos del mismo tipo (por

ejemplo, una lista de valores numéricos, cadenas de texto o booleanos).

Los arreglos permiten acceder, modificar, calcular y graficar grandes conjuntos de datos de

manera más eficiente que si se manejaa cada valor por separado.

En instrumentación virtual, los arreglos son esenciales para almacenar secuencias de

mediciones tomadas a intervalos regulares, como temperatura, voltaje, corriente, presión o

desplazamiento.

Tipos de arreglos:

Unidimensionales: contienen una sola fila o columna de datos (por ejemplo, 100 lecturas de

voltaje).

 Bidimensionales: organizan los datos en filas y columnas, semejantes a una tabla (por

ejemplo, una matriz de datos experimentales).

 Multidimensionales: se usan para representar datos en más de dos dimensiones, como

mapas tridimensionales de temperatura o presión.

 Propiedades operaciones y comunes en arreglos:

 Índices: permiten acceder a una posición específica del arreglo (por ejemplo, el valor

número 50 de 100 muestras).

 Subconjuntos: se pueden extraer segmentos o subconjuntos de datos para análisis

específico.

 Funciones matemáticas: se pueden aplicar operaciones como suma, promedio,

desviación estándar o filtrado a todos los elementos del arreglo.

 Gráficas: los arreglos se utilizan para alimentar gráficas de tiempo real o

representaciones de señales adquiridas.

Ejemplo práctico en LabVIEW:

Supongamos que un sistema de adquisición de datos toma 100 lecturas de temperatura cada

segundo.

En el diagrama de bloques, se puede utilizar un For Loop para adquirir los datos y construir

un arreglo de 100 elementos.

Luego, este arreglo se envía a una gráfica de onda (Waveform Graph) para visualizar la

evolución temporal de la señal.

Ejemplo en Python (con NumPy):

Este fragmento crea un arreglo con lecturas de temperatura y calcula su promedio, tal como

se haría en una aplicación de monitoreo.

Grupos de Datos (Clusters)

Un cluster (grupo de datos) es una estructura que permite agrupar diferentes tipos de datos

en un solo contenedor.

A diferencia de los arreglos, donde todos los elementos deben ser del mismo tipo, los clusters

pueden contener valores numéricos, booleanos, cadenas, arrays u otros clusters .

Esto los convierte en una herramienta ideal para empaquetar información compleja

proveniente de un mismo proceso o medición.

Por ejemplo, una lectura de sensor puede incluir el valor medido (numérico), la unidad

(cadena de texto), la hora de registro (timestamp) y el estado del sensor (booleano).

Características de los clusters:

o Permitirán mantener la coherencia entre distintos tipos de datos asociados.

o Mejoran la legibilidad del programa al agrupar información relacionada.

o Pueden anidarse (clusters dentro de clusters) para organizar jerárquicamente los

datos.

o Facilitan la comunicación de datos entre subrutinas o subVIs.

Ejemplo práctico en LabVIEW:

Un cluster puede contener:

Un valor de temperatura (numérico).

El estado del sistema (booleano), indicando si el sensor está activo.

Una cadena de texto con la etiqueta “Sensor 1”.

Una marca de tiempo.

Este cluster puede conectarse a un solo terminal de entrada/salida, simplificando el diagrama

de bloques y haciendo el código más modular.

Ejemplo práctico en Python (usando diccionarios o tuplas):

Aplicaciones de Arreglos y Clusters en Instrumentación Virtual

 Adquisición de datos: Los valores obtenidos por tarjetas DAQ se almacenan en

arreglos para su análisis estadístico y graficación.

 Procesamiento de señales: Los arreglos permiten aplicar filtros digitales,

transformadas de Fourier o cálculos RMS sobre los datos adquiridos.

 Visualización de información: Los clusters se usan para mostrar múltiples variables

(como temperatura, presión y tiempo) en una sola interfaz.

 Transmisión y almacenamiento de datos: Los grupos de datos se pueden enviar entre

subprogramas o guardar en archivos JSON, TXT o CSV para análisis posterior.

 Control de sistemas mecatrónicos: Un cluster puede contener tanto las señales de

entrada de sensores como las salidas de control hacia actuadores, permitiendo un

manejo estructurado del sistema completo

2.5 Cadenas y Archivos de Entrada / Salida

Cadenas

Definición

Una cadena es una secuencia ordenada de caracteres alfanuméricos que puede incluir letras,

números, espacios y símbolos. En instrumentación virtual, las cadenas son utilizadas para

representar información textual dentro de los programas, como nombres de sensores,

mensajes en interfaces gráficas, comandos de comunicación o rutas de archivos.

En entornos como LabVIEW , las cadenas pueden visualizarse mediante indicadores y

controles específicos, mientras que en lenguajes como Python , se manejan mediante comillas

(" ") o (' ').

Usos comunes de las cadenas

Mensajes e interfaces de usuario: mostrar texto informativo o estados del sistema (“Sistema

conectado”, “Lectura completada”, etc.).

Comandos de comunicación: enviar y recibir instrucciones a través de puertos de

comunicación (por ejemplo, RS-232 o USB).

Rutas de archivos: defina la ubicación de los archivos que se van a leer o escribir.

Conversión de datos: transforma valores numéricos a texto o viceversa para su visualización

o almacenamiento.

Etiquetas y unidades: mostrar junto a los datos medidos (por ejemplo, “Voltaje = 12.5 V”).

Funciones comunes aplicadas a cadenas

Concatenación: unir varias cadenas en una sola (por ejemplo, "Sensor: " + "Temperatura"→

"Sensor: Temperatura").

Búsqueda y reemplazo: localizar una palabra o símbolo dentro de un texto y sustituirlo.

Subcadenas: extraer partes específicas de una cadena (por ejemplo, solo la fecha dentro de

una marca de tiempo).

Conversión numérica: transformar cadenas con números (“23.4”) en valores numéricos

reales para cálculos.

Ejemplo en LabVIEW:

En un VI de monitoreo de sensores, una cadena puede combinarse con un valor numérico

para mostrar en pantalla:

"Temperatura actual: " + valor_numérico + " °C"

Ejemplo en Python:

Salida:
Temperatura actual: 26.8 °C

 Archivos de Entrada y Salida (File I/O)

La entrada/salida de archivos (Input/Output o I/O) consiste en los procesos de lectura y

escritura de información hacia o desde archivos almacenados en un medio físico, como un

disco duro o memoria USB.

Esta operación permite que un instrumento virtual almacene registros, recuperar

configuraciones previas o exportar resultados para análisis posteriores.

En instrumentación virtual, los archivos son esenciales para lograr persistencia de datos,

trazabilidad de mediciones y comunicación entre sistemas.

Tipos de archivos más comunes

 Archivos de texto (.txt, .csv):

Fáciles de leer y manipular.

Ideales para guardar datos numéricos o registros de sensores.

Los archivos .csv(valores separados por comas) son ampliamente usados para compatibilidad

con Excel o MATLAB.

 Archivos binarios (.dat, .bin):

Almacenan datos en formato binario, ocupando menos espacio.

Permiten una lectura y escritura más rápida, útil en grandes volúmenes de datos o señales de

alta frecuencia.

 Archivos de configuración (.ini, .json):

Contiene parámetros de calibración o ajustes del sistema que el programa puede leer al

iniciar.

 Archivos de registro o log (.log):

Guardan eventos del sistema, errores o advertencias para diagnóstico y mantenimiento.

Operaciones básicas de archivos

Apertura del archivo: especifique si se leerá, escribirá o modificará.

Lectura o escritura: realizar la operación correspondiente.

Cierre del archivo: liberar los recursos y asegurar que los datos se guarden correctamente.

Ejemplo en LabVIEW:

Write to Text File.vi: permite escribir cadenas o datos numéricos en un archivo de texto.

Leer desde Spreadsheet File.vi: lee datos de archivos .csvo .txty los convierte en arreglos

numéricos.

File Dialog.vi: abre un cuadro para seleccionar archivos desde el explorador del sistema.

Ejemplo en Python:

Aplicaciones en Instrumentación Virtual

Registro de datos experimentales: Guarde las mediciones obtenidas por sensores (por

ejemplo, temperatura, voltaje o caudal) con marcas de tiempo.

Análisis post-proceso: Los datos almacenados pueden importarse a software como Excel,

MATLAB o Python para graficar o realizar análisis estadístico.

Configuración dinámica de sistemas: Los archivos de texto o JSON pueden contener

parámetros (como límites de alarma o constantes de calibración) que el programa carga al

iniciar, adaptando su comportamiento automáticamente.

Comunicación entre instrumentos virtuales: Varios VIs o scripts pueden compartir

información escribiendo y leyendo un mismo archivo de datos.

Generación de informes automáticos: Mediante cadenas, se construyen informes con los

resultados de mediciones, que luego se guardan o imprimen en formato de texto o PDF.

Ventajas del uso de cadenas y archivos I/O

Trazabilidad: los datos quedan registrados para validación o auditorías.

Flexibilidad: permiten configurar programas sin necesidad de modificar el código.

Interoperabilidad: los archivos generados pueden leerse en otros programas o sistemas.

Automatización: posibilitan la creación de informes automáticos o el almacenamiento de

periódicos de información sin intervención humana.

Conclusiones

El estudio de los instrumentos virtuales permite comprender la forma en que la programación

y la digitalización han transformado la instrumentación y el control de procesos industriales.

A través del análisis de los distintos temas —desde los ambientes de programación hasta la

gestión avanzada de datos— se evidencia que la instrumentación virtual no solo facilita la

adquisición y procesamiento de señales, sino que también optimiza la interacción entre el

operador y el sistema mediante interfaces personalizadas, automatización y almacenamiento

eficiente de información.

Los conceptos de funciones, subrutinas, ciclos, temporización, arreglos, clusters, cadenas y

archivos I/O conforman los fundamentos que permiten estructurar aplicaciones robustas y

precisas. Estos elementos, combinados con un software adecuado, hacen posible desarrollar

herramientas virtuales que sustituyen o complementan a los instrumentos físicos

tradicionales, mejorando la flexibilidad, escalabilidad y capacidad de análisis de los sistemas

mecatrónicos.

Referencias bibliográficas

[1] N. Navani, S. Sharma y M. Sapra, Instrumentación virtual con LabVIEW . Nueva Delhi,

India: Tata McGraw-Hill Education, 2011.

[2] R. Bishop, Aprendiendo con LabVIEW 2020. Upper Saddle River, NJ, EE. UU.:

Pearson Education, 2020.

[3] JW Dally, WF Riley y KG McConnell, Instrumentation for Engineering Measurements

, 2.ª ed. Nueva York, NY, EE. UU.: Wiley, 2022.

[4] National Instruments, “Introducción a la instrumentación virtual”, NI Technical Report ,

Austin, TX, EE. UU., 2023. [En línea]. Disponible en: https://www.ni.com

[5] A. Gilat y V. Subramaniam, Introducción a la programación con MATLAB , 6.ª ed.

Hoboken, NJ, EE. UU.: Wiley, 2018.

INSTITUTO TECNOLÓGICO SUPERIOR

DE SAN ANDRÉSTUXTLA

PRACTICA UII

CARRERA

INGENIERÍA MECATRÓNICA

PRESENTA

FRANCISCO EDUARDO AZAMAR

GRUPO:

911-A

CATEDRÁTICO

DR. JOSÉ ÁNGEL NIEVES VÁSQUEZ

ASIGNATURA:

INSTRUMENTACIÓN VIRTUAL

SAN ANDRES TUXTLA VER, A 04 DE OCTUBRE DEL 2025

Introducción

En los procesos industriales, el control de variables es un aspecto fundamental para garantizar

la eficiencia, la seguridad y la calidad de los productos. Variables como la temperatura, la

presión, el caudal o el nivel deben mantenerse dentro de rangos específicos para asegurar el

correcto funcionamiento de los equipos y la estabilidad del proceso. Para lograrlo, se emplean

sistemas de control automático que permiten regular estas variables en tiempo real,

compensando perturbaciones externas y minimizando errores.

Dentro de los diferentes métodos de control, el control PID (Proporcional, Integral y

Derivativo) se ha consolidado como uno de los más utilizados en la industria debido a su

simplicidad, robustez y capacidad de adaptación a una amplia variedad de sistemas. Este

controlador ajusta continuamente la señal de salida de acuerdo con la diferencia entre el valor

deseado (setpoint) y el valor real de la variable, corrigiendo desviaciones de forma eficiente.

En esta práctica se desarrolla una simulación del control de temperatura mediante un

controlador PID implementado en el lenguaje Python, con el objetivo de comprender el

comportamiento dinámico del sistema y observar cómo las acciones proporcionales,

integrales y derivativas influyen en la estabilidad y respuesta del proceso. De esta manera, se

destaca la relevancia del control automático como una herramienta esencial para la

optimización y automatización de los sistemas industriales modernos.

Objetivo de la práctica

Diseñar una simulación de un proceso industrial donde se mida alguna variable física

(temperatura, nivel, flujo o presión), utilizando cualquier software de diseño o programación.

Marco teórico

Una variable de proceso es una condición física o química que es de interés medir y

controlar, ya que puede alterar la producción o manufactura. En la instrumentación

industrial se consideran las siguientes cuatro variables como las principales:

 Presión

 Temperatura

 Nivel

 Flujo

Presión

En ingeniería, el término presión se refiere generalmente a la fuerza ejercida por un fluido

por unidad de área de la superficie que lo encierra. Existen muchas razones por las cuales en

un determinado proceso se debe medir presión. La calidad del producto frecuentemente

depende de ciertas presiones que se deben mantener en un proceso. Por seguridad, en

recipientes presurizados donde no debe exceder un valor máximo dado por las

especificaciones del diseño, también en aplicaciones de medición de nivel,

Temperatura

La temperatura es una de las variables más usadas en la industria de control de procesos y

básica para medición y control de flujo, así como de la densidad, entre otros. Su medición y

control, son vitales para asegurar uniformidad en la calidad de los productos terminados y

mantenerse dentro de los límites seguros en operaciones que tengan riesgos de fuego y/o

explosión.

Nivel

Su aplicación más frecuente es la medición del volumen de líquidos, aunque también se

emplea en almacenamiento de materiales sólidos. Algunos ejemplos de su utilidad son el

control y la medición para evitar que un líquido se derrame, la medición de nivel de un

depósito, el control de contenido corrosivo, abrasivo, en altas presiones, radiactivo, entre

otros. En algunos fluidos junto con el nivel se mide la temperatura para calcular el volumen

ya compensado.

Flujo

Es la cantidad de fluido que pasa en una unidad de tiempo. Normalmente se identifica con el

flujo volumétrico o másico que pasa por un área dada en una unidad de tiempo. Las

aplicaciones son muchas, desde las más sencillas, como la medición de flujo de agua en

estaciones de tratamiento y residencias, hasta medición de gases industriales y combustibles,

pasando por mediciones más complejas.

Simulación de variables físicas mediante software

Las simulaciones de física son herramientas educativas que permiten recrear fenómenos

físicos de forma interactiva y visual. Su utilidad en el aprendizaje radica en que facilitan la

comprensión de conceptos abstractos, estimulan el razonamiento científico y fomentan la

experimentación. Además, pueden ayudar a los estudiantes a desarrollar habilidades como la

resolución de problemas, el pensamiento crítico y la creatividad.

Beneficios de utilizar simulaciones de física en el aula

 Permiten más experiencias de laboratorio

Con simulaciones virtuales, los estudiantes pueden visualizar e interactuar con conceptos

fuera del ámbito de un laboratorio tradicional. Por ejemplo, pueden manipular parámetros o

variables como la gravedad y la fricción. También pueden recrear experimentos importantes

de Física, pero que son demasiado laboriosos, riesgosos o costosos de realizar.

 Facilitan la participación de todos los estudiantes.

Las simulaciones permiten que los estudiantes puedan practicar e interactuar con sus

compañeros al compartir sus experiencias y discutir los resultados obtenidos.

 Permiten que los estudiantes retengan mejor lo que han aprendido.

Actualmente, las simulaciones son más que aplicaciones de hacer clic y reproducir; algunas

permiten una experiencia de laboratorio completa, ya que son diseñadas para funcionar como

un laboratorio real. Utilizarlas en el aula de clases, ya sea de forma presencial o virtual, puede

mejorar el desarrollo de habilidades de los estudiantes, así como su conocimiento conceptual.

 Proporcionan retroalimentación inmediata

Las simulaciones permiten que los estudiantes, en caso de cometer errores, puedan corregir

conceptos o datos erróneos, así como a los profesores intervenir en el proceso de aprendizaje

cuando sea necesario.

 Disponibilidad las 24 horas

Los estudiantes puede acceder en cualquier momento del día a las simulaciones virtuales, lo

que brinda una excelente opción para recuperar clases perdidas o repetir experimentos sin

preocuparse por costos de mantenimiento o materiales limitados.

 Son seguras y rentables

En el caso de simulaciones de experimentos, los profesores pueden brindar asistencia a sus

estudiantes de forma individual sin tener que estar monitoreando continuamente el

cumplimiento de los procedimientos y la seguridad. Además, complementar las clases con

simulaciones proporciona a cada estudiante una experiencia práctica y reduce la cantidad

gastada en costosos instrumentos y suministros de laboratorio.

Softwares de simulación de uso libre

Python

Python es un lenguaje de programación informática que se utiliza a menudo para crear sitios

web y software, automatizar tareas y realizar análisis de datos. Python es un lenguaje de

propósito general, lo que significa que se puede utilizar para crear una variedad de programas

diferentes y no está especializado en ningún problema específico. Esta versatilidad, junto con

su facilidad para los principiantes, lo ha convertido en uno de los lenguajes de programación

más utilizados en la actualidad.

Algodoo

Algodoo es un software de simulación de física 2D al estilo “sandbox” (caja de arena),

desarrollado por Algorix Simulation AB, que permite a los usuarios crear escenarios

interactivos y experimentar con diferentes situaciones físicas, ya que permite controlar una

gran cantidad de variables y parámetros, como la gravedad, fricción, índice de refracción,

densidad, presión, flotabilidad, entre otros. Es fácil de usar y tiene una interfaz intuitiva, tiene

amplio soporte para acelerómetros, pantallas táctiles, e Intel Classmate PC. El motor físico

del software está basado en la constante lineal SPOOL. También incluye contenido como

planes de lecciones, escenas prediseñadas y tutoriales.

Physion

Physion es un software de simulación de física gratuito que permite diseñar y simular

experimentos de física realistas en un mundo físico virtual. Puede ser considerado como una

aplicación CAD combinada con un motor de física 2D donde los objetos que se diseñan

pueden simularse instantáneamente.

Tracker. Video Analysis and modeling tool

Tracker. Video Analysis and modeling tool es una herramienta gratuita de análisis de video

y construcción de modelos diseñados para ser usado en la enseñanza de la Física. Está basada

en el marco Java Open Source Physics (OSP). Entre sus características se encuentra:

 Seguimiento de objetos manual y automatizado con superposiciones y datos de

posición, velocidad, y aceleración.

 La opción Model Builder crea modelos cinemáticos y dinámicos de partículas de

masa puntual y sistemas de dos cuerpos.

 El motor de video gratuito Xuggle reproduce y graba muchos formatos (mov, avi, flv,

mp4, wmv.) en Windows, MacOS y Linux.

 Posee herramientas de análisis de datos que incluyen ajuste de curvas manual o

automático.

 Cuenta con una extensa biblioteca de recursos digitales.

Easy Javascript Simulations

Easy Javascript Simulations (EJSS), anteriormente conocido como Easy Java Simulations,

es una herramienta de autoría gratuita escrita en Java que ayuda a los no programadores a

crear simulaciones interactivas en Java o Javascript, principalmente con fines educativos.

EJS ha sido creado por Francisco Esquembre y forma parte del proyecto Open Source

Physics.

Energy2D

Energy2D es un software de simulación de física que se basa en la investigación de la física

computacional y modela los tres mecanismos de transferencia del calor: conducción,

convección y radiación. Es una herramienta útil para la enseñanza de las ciencias

experimentales, ya que permite a los estudiantes comprender mejor los conceptos abstractos

y complejos de la física, y les brinda la oportunidad de experimentar con diferentes

situaciones y escenarios.

Simphy

Simphy es un software de simulación de física que ofrece simulaciones interactivas en 3D de

electricidad, óptica, mecánica, fluidos, entre otros. Los profesores pueden crear sus propias

simulaciones con herramientas de arrastrar y soltar, y acceder a una gran biblioteca de

simulaciones (alguna de ellas gratis).

Desarrollo

Para la realización de esta práctica, se decidió realizar un código en Python que permita

visualizar una simulación del control de una variable física en tiempo real, para este ejercicio

se utilizó la variable de temperatura por ser una de las más manipulables.

Dicho proceso se trató de desarrollar mediante un controlador PID para obtener un a mejor

monitorización de la variable y de esta forma llegar a un mejor equilibro en un menor tiempo.

A continuación, se muestra el código diseñado en el entorno de Python.

-*- coding: utf-8 -*-

"""

Created on Sat Oct 4 18:06:40 2025

@author: Francisco

"""

import tkinter as tk

from tkinter import ttk

import matplotlib.pyplot as plt

from matplotlib.backends.backend_tkagg import

FigureCanvasTkAgg

import numpy as np

Parámetros del sistema

Kp = 2.0

Ki = 0.1

Kd = 1.0

Variables de simulación

setpoint = 60.0

temperatura = 25.0

error_prev = 0.0

integral = 0.0

running = False

tiempo = [0]

valores_temp = [temperatura]

valores_set = [setpoint]

Ventana principal

root = tk.Tk()

root.title("Simulación de Control de Temperatura con PID")

root.configure(bg="#eef2f3")

Crear figura de Matplotlib

fig, ax = plt.subplots(figsize=(6, 3))

ax.set_title("Evolución de la temperatura")

ax.set_xlabel("Tiempo (s)")

ax.set_ylabel("Temperatura (°C)")

linea_temp, = ax.plot(tiempo, valores_temp, "r-",

label="Temperatura")

linea_set, = ax.plot(tiempo, valores_set, "b--",

label="Setpoint")

ax.legend()

canvas = FigureCanvasTkAgg(fig, master=root)

canvas.get_tk_widget().grid(row=0, column=1, rowspan=10,

padx=15, pady=10)

--- Elementos GUI (lado izquierdo) ---

tk.Label(root, text="Setpoint (°C):",

bg="#eef2f3").grid(row=0, column=0, pady=5)

entry_setpoint = ttk.Entry(root)

entry_setpoint.insert(0, "60.0")

entry_setpoint.grid(row=1, column=0)

label_temp = tk.Label(root, text=f"Temperatura actual:

{temperatura:.1f} °C", font=("Arial", 12), bg="#eef2f3")

label_temp.grid(row=2, column=0, pady=5)

label_potencia = tk.Label(root, text="Potencia del

calentador: 0%", font=("Arial", 10), bg="#eef2f3")

label_potencia.grid(row=3, column=0, pady=5)

label_estado = tk.Label(root, text="Calentador: APAGADO",

font=("Arial", 11, "bold"), fg="gray", bg="#eef2f3")

label_estado.grid(row=4, column=0, pady=5)

--- Canvas para la caldera ---

canvas_caldera = tk.Canvas(root, width=200, height=200,

bg="#dfe6e9")

canvas_caldera.grid(row=5, column=0, pady=10)

rect_caldera = canvas_caldera.create_rectangle(60, 80, 140,

140, fill="blue")

label_caldera = tk.Label(root, text="Caldera", bg="#eef2f3")

label_caldera.grid(row=6, column=0)

--- Botones ---

def iniciar():

 global running

 running = True

 simular()

def detener():

 global running

 running = False

btn_iniciar = ttk.Button(root, text="Iniciar Simulación",

command=iniciar)

btn_iniciar.grid(row=7, column=0, pady=5)

btn_detener = ttk.Button(root, text="Detener Simulación",

command=detener)

btn_detener.grid(row=8, column=0, pady=5)

--- Lógica PID y simulación ---

def simular():

 global temperatura, integral, error_prev, running, tiempo

 if not running:

 return

 try:

 sp = float(entry_setpoint.get())

 except ValueError:

 sp = setpoint

 error = sp - temperatura

 integral += error

 derivada = error - error_prev

 potencia = Kp * error + Ki * integral + Kd * derivada

 potencia = max(0, min(potencia, 100)) # Límite 0–100%

 error_prev = error

 # Dinámica del sistema

 temperatura += (potencia * 0.05) - (temperatura - 25) *

0.02

 # Actualización visual

 label_temp.config(text=f"Temperatura actual:

{temperatura:.1f} °C")

 label_potencia.config(text=f"Potencia del calentador:

{potencia:.1f}%")

 label_estado.config(text="Calentador: ENCENDIDO",

fg="green" if potencia > 0 else "gray")

 # Color de caldera según temperatura

 if temperatura < 25:

 color = "#87CEFA" # Azul claro

 elif 25 <= temperatura <= 35:

 color = "blue"

 elif 36 <= temperatura <= 45:

 color = "yellow"

 elif 46 <= temperatura <= 60:

 color = "orange"

 else:

 color = "red"

 canvas_caldera.itemconfig(rect_caldera, fill=color)

 # Actualizar gráfico

 tiempo.append(tiempo[-1] + 1)

 valores_temp.append(temperatura)

 valores_set.append(sp)

 linea_temp.set_data(tiempo, valores_temp)

 linea_set.set_data(tiempo, valores_set)

 ax.relim()

 ax.autoscale_view()

 canvas.draw()

 root.after(200, simular) # Llamada periódica (200 ms)

root.mainloop()

Resultados

Después de revisar posibles errores en el código, procedemos a ejecutarlo en la consola y

visualizar los datos obtenidos.

Esta es la interfaz diseñada, en la cual se pueden apreciar los valores iniciales de la

temperatura de nuestro proceso, en este caso se eligió una caldera hipotética, de igual forma

podemos apreciar el valor del setpoint, en este caso es de 60°, la ilustración de la caldera

cambiara de color conforme aumente o disminuya la temperatura del proceso.

Al iniciar con la simulación, se aprecia que la caldera cambia a un color amarillo cuando la

temperatura sobrepasa los 35°, mientras que la potencia del calentador se encuentra a un

57% y sigue en acenso para llegar al valor deseado.

Conforme pasa el tiempo, la temperatura sigue subiendo y nuestra representación de la

caldera cambia de color.

Después de sobrepasar el valor del setpoint establecido, la tonalidad del grafico es roja,

simulando un estado de alerta, el cual inicia un proceso inverso para controlar el valor de la

temperatura del proceso.

De esta forma tenemos la simulación completa, apreciamos la forma que adopta la gráfica

de temperatura con respecto al tiempo, para este proceso podemos afirmar que nuestro

proceso se estabiliza alrededor de los 80s.

Conclusiones

La práctica realizada permitió comprobar la utilidad de Python como herramienta para el

modelado y simulación de sistemas de control en procesos industriales. A través de la

implementación de un algoritmo de regulación de temperatura, se observó el comportamiento

dinámico del proceso y la manera en que el controlador ajusta la variable manipulada para

mantener la variable de salida dentro de los valores deseados. Esta experiencia no solo

reforzó los conceptos teóricos del control de procesos, sino que también evidenció la

importancia de la simulación computacional como etapa previa a la implementación real, ya

que permite analizar el desempeño del sistema, detectar posibles mejoras y optimizar

parámetros de manera segura y eficiente.

Referencias bibliográficas

1. Cietsa_Web, “Principales variables de los procesos industriales,” Cietsa, Aug. 01,

2023. https://cietsa.com.mx/principales-variables-de-los-procesos-industriales/

2. A. Interactiva and A. Interactiva, “Los 6 mejores programas para crear tus propias

simulaciones de física,” Aula Interactiva, Nov. 23, 2023. [Online]. Available:

https://aulainteractiva.com.ve/simulaciones-de-fisica/

3. C. Staff, “¿Qué es Python y para qué se usa? Guía para principiantes,” Coursera,

Nov. 29, 2023. https://www.coursera.org/mx/articles/what-is-python-used-for-a-

beginners-guide-to-using-python

https://cietsa.com.mx/principales-variables-de-los-procesos-industriales/
https://aulainteractiva.com.ve/simulaciones-de-fisica/
https://www.coursera.org/mx/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://www.coursera.org/mx/articles/what-is-python-used-for-a-beginners-guide-to-using-python

LISTA DE COTEJO INVESTIGACION

INSTRUMENTACIÓN VIRTUAL.

Nombre del estudiante: FRANCISCO EDUARDO AZAMAR.

Tema: APLICACIONES REALES DE LA INSTRUMENTACIÓN VIRTUAL.

Portada 2 % 2 %

Introducción 5 % 5 %

Desarrollo 10 % 10 %

Conclusiones 5 % 5%

Referencias 3 % 3 %

Entrega en tiempo y forma 5 % 5 %

Examen diagnostico 10 % 10 %

Total 40 % 40%

LISTA DE COTEJO DE PRÁCTICAS

INSTRUMENTACIÓN VIRTUAL.

Nombre del estudiante: FRANCISCO EDUARDO AZAMAR.

Tema: PRÁCTICA NÚMERO U2

Portada 5 % 5 %

Introducción 10 % 10 %

Desarrollo 30 % 30 %

Conclusiones 5 % 5 %

Referencias 2 % 2 %

Entrega en tiempo y forma 8 % 8 %

Total 60 % 60 %

